Astrophysik mit tiefen neuronalen Netzen
Mathematische Modelle offenbaren Struktur und Langzeitverhalten von Galaxien.
Bayreuther Wissenschaftler erforschen die Struktur und das Langzeitverhalten von Galaxien mithilfe mathematischer Modelle, basierend auf Einsteins Relativitätstheorie. Ihr innovativer Ansatz nutzt ein tiefes neuronales Netz zur schnellen Vorhersage der Stabilität von Galaxie-Modellen. Dieses auf künstlicher Intelligenz basierende Verfahren ermöglicht eine effiziente Verifizierung oder Falsifizierung astrophysikalischer Hypothesen in Sekunden. Das Forschungsziel von Sebastian Wolfschmidt und Christopher Straub ist die Untersuchung der Struktur und des Langzeitverhaltens von Galaxien. „Da diese nicht vollständig durch astronomische Beobachtungen analysiert werden können, nutzen wir mathematische Modelle von Galaxien“, erklärt Christopher Straub von der Universität Bayreuth. „Um dabei zu berücksichtigen, dass die meisten Galaxien ein schwarzes Loch im Zentrum beinhalten, beruhen unsere Modelle auf Albert Einsteins allgemeiner Relativitätstheorie, welche Gravitation als Krümmung einer vierdimensionalen Raumzeit beschreibt.“
Mathematiker und Astrophysiker erforschen seit Jahrzehnten die Eigenschaften solcher Galaxie-Modelle, wobei viele Fragen noch immer offen sind. Als Hilfsmittel zur Klärung dieser Fragen haben Straub und Wolfschmidt ein tiefes neuronales Netz implementiert, was einen komplett neuartigen Ansatz in diesem Forschungsbereich darstellt. Neuronale Netzwerke sind leistungsstarke Rechenmodelle, deren Struktur von der des menschlichen Gehirns inspiriert ist. Sie werden im Bereich der künstlichen Intelligenz genutzt, um komplexe Strukturen in großen Datenmengen zu erkennen.
„Das neuronale Netz kann vorhersagen, welche Modelle von Galaxien in der Realität existieren können und welche nicht“, sagt Sebastian Wolfschmidt. „Das neuronale Netz liefert dabei eine bedeutend schnellere Vorhersage als die in der Vergangenheit verwendeten numerischen Simulationen. So lassen sich astrophysikalische Hypothesen, die über die vergangenen Jahrzehnte aufgestellt wurden, innerhalb weniger Sekunden verifizieren oder falsifizieren.“
„Wir befassen uns seit 2019 am Lehrstuhl Mathematik VI in der Arbeitsgruppe Gerhard Rein mit diesen Fragestellungen. Nach verschiedensten analytischen und numerischen Untersuchungen haben wir vor ungefähr einem Jahr erkannt, dass der Einsatz von maschinellem Lernen für einige unserer Probleme besonders hilfreich sein kann. Seitdem haben wir das beschriebene tiefe neurale Netz entwickelt, und haben auch bereits Pläne für weitere Einsatzmöglichkeiten ähnlicher Methoden“, sagt Straub. Die Berechnungen der Bayreuther Mathematiker wurden vom Supercomputer des „Keylab HPC“ an der Universität Bayreuth durchgeführt und das Projekt entwickelte sich aus einer Zusammenarbeit mit dem Lehrstuhl für Angewandte Informatik II - Parallele und verteilte Systeme.
U. Bayreuth / JOL