Aufsteh-Molekülchen
Hauchdünnes Molekül lässt sich aufrecht und stabil auf Silber-Oberfläche anbringen.
Schon seit einiger Zeit sind Forscher in der Lage, Strukturen aus einzelnen Atomen zu erzeugen. Eines der ersten Beispiele präsentierten D. M. Eigler und E. K. Schweizer im Jahr 1990: ein winziges Logo von IBM, das von einigen wenigen Xenonatomen gebildet wird, hergestellt mit Hilfe eines Rastersondenmikroskops. Doch auch heute, fast dreißig Jahre später, ist man von einer direkten Herstellung von Nanostrukturen aus komplexen Molekülen immer noch weit entfernt.
Abb.: Aufrecht stehendes PTCDA-Molekül auf dem Silberpodest (links); normalerweise lagert sich das Molekül flach an die Silberschicht an (rechts). (Bild: FZJ / T. Esat)
Obwohl Moleküle viel größer sind als Atome, sind sie dennoch viel schwieriger zu kontrollieren. „Bei Atomen spielt die Ausrichtung keine Rolle. Aber Moleküle haben eine bestimmte räumliche Struktur. Es kommt zum Beispiel darauf an, in welcher Lage sie auf einer Oberfläche oder an der Mikroskopspitze haften, die die Ausdehnung des Moleküls um viele Größenordnungen übersteigt“, erklärt Stefan Tautz, Institutsleiter am Forschungszentrum Jülich.
Nun stellt die Arbeitsgruppe um Ruslan Temirov am Institut von Stefan Tautz ein Experiment vor, mit dem es ihnen erstmals gelungen ist, ein plättchenförmiges PTCDA-
„Bis jetzt dachte man, dass das Molekül von selbst wieder in seine Lieblingsposition zurückfällt und sich flach an die untere Schicht anlagert. Aber das ist nicht der Fall, es verhält sich erstaunlich stabil in der aufrechten Orientierung. Selbst wenn man es mit der Mikroskopspitze anschubst, fällt es nicht um, sondern schwingt einfach wieder zurück. Bis jetzt können wir über den Grund nur spekulieren“, berichtet Taner Esat.
Die Arbeit gilt den Autoren zufolge als wichtiger Schritt für die Entwicklung neuer, innovativer Produktionstechniken mit einzelnen Molekülen. Menschen haben im Laufe der Geschichte gelernt, die Welt auf immer kleineren Skalen zu kontrollieren. Als ultimatives Ziel gilt die Fertigung beliebiger molekularer Architekturen. Dabei würden Nanostrukturen direkt aus einzelnen Molekülen zusammengesetzt, ähnlich wie mit Lego. Die Anwendungsmöglichkeiten wären praktisch unbegrenzt. Insbesondere in der Nanoelektronik ergäben sich so völlig neue Möglichkeiten, Logik-, Speicher-, Sensor- und Verstärkerschaltungen zu realisieren.
„In der makroskopischen Welt sind die industriellen Produktionsprozesse schon sehr ausgereift. Im Kleinen klappt das aber noch nicht so gut. Da ist die Natur viel weiter“, erklärt Stefan Tautz. In lebenden Zellen formieren sich Moleküle nach dem Mechanismus der Selbst-
„So wie sich in der Natur Autos, Computer, Häuser und solche Dinge nicht spontan bilden, sondern durch Handarbeit oder Maschinen geschaffen werden müssen, haben wir mit unserem Experiment in Handarbeit auf molekularer Ebene einen künstlichen metastabilen Zustand hergestellt, der dazu noch über eine bestimmte Funktionalität verfügt“, erläutert Stefan Tautz.
Die Forscher verwendeten das aufrechte Molekül bereits erfolgreich als Elektronenquelle, die einzelne Elektronen aussendet. Bei einer solchen Einzelelektronen-
Dem aktuellen Forschungsergebnis gingen mehrere Vorarbeiten voraus. Bereits in den letzten Jahren ist es Jülicher Forschern zum Beispiel gelungen, mit einer selbst entwickelten Handsteuerung für Rastersondenmikroskope einzelne Moleküle aus Blöcken und Schichten herauszupflücken. Die Arbeitsgruppe um Ruslan Temirov arbeitet zudem daran, den Kontrast und die Auflösung der Mikroskope mithilfe einzelner Atome und Moleküle als Sonden zu verbessern. Dazu werden einzelne Moleküle oder Atome als Sensor an die Spitze des Mikroskops geheftet. Diese ermöglichen es dann, Strukturen und sogar elektrische Felder deutlich besser aufgelöst abzutasten, als es mit einer konventionellen metallischen Spitze möglich ist.
FZJ / DE