17.02.2014

Beschleunigung mit Laser als Teilchenquelle

Erste Messergebnisse zur Polarisation des Kernspins versprechen hochpräzise Experimente.

Kompakte Laser-Plasma-Beschleuniger sind im Begriff, klassische Teilchenbeschleuniger in immer mehr Bereichen zu ersetzen. Möglicherweise lassen sie sich auch als Quelle für polarisierte Teilchenstrahlen nutzen, wie erste Messungen von Jülicher und Düsseldorfer Wissenschaftlern nahelegen. Derartige Teilchenstrahlen werden für hochpräzise kernphysikalische Experimente benötigt. In Kombination mit der neuen Beschleunigertechnologie können sie darüber hinaus neue Ansätze für die Fusionsenergie eröffnen.

Abb.: Die Polarisation führt zu einer asymmetrischen Verteilung der Streuteilchen. Die gleichmäßige Verteilung auf den Fotos der Detektoren ohne (links) und mit (rechts) Streuung an einem Siliziumtarget zeigt, dass die Teilchen nicht durch den Laser polarisiert werden. (Bild: N. Raab / U. Köln)

Beschleuniger, die mit Laserpulsen höchster Intensität arbeiten, können Teilchen schon in gewöhnlichen Laborräumen auf die notwendigen Geschwindigkeiten bringen – bei entsprechend geringerem Aufwand für Anschaffung und Betrieb. Die erste Generation dieser neuen Beschleunigertechnologie befindet sich seit einigen Jahren im Einsatz und wird seitdem für verschiedene neue Anwendungsfelder weiterentwickelt.

Zur Erzeugung des Teilchenstrahls schießt dabei ein Laser auf eine dünne Folie. Die hohe Energie führt dazu, dass sich die Elektronen beim Auftreffen des Laserpulses von den Atomkernen lösen. Zwischen den positiv geladenen Atomrümpfen und der dahinter liegenden, negativ geladenen Elektronenwolke bildet sich ein elektromagnetisches Feld aus. Dieses Feld ist etwa eine Million Mal stärker als das konventioneller Teilchenbeschleuniger und daher in der Lage, die Atomkerne auf kürzester Distanz zu beschleunigen.

Die Arbeitsgruppe von Markus Büscher arbeitet daran, diese sogenannten Laser-Plasma-Beschleuniger für klassische Physikexperimente einzusetzen. „Wir haben eine Methode entwickelt, die es erstmals ermöglicht, die Polarisation der Teilchen an Laser-Beschleunigern zu messen. Dabei hat sich gezeigt, dass der sogenannte Spin oder Eigendrehimpuls der Protonen nicht durch die starken elektromagnetischen Felder ausgerichtet wird, die innerhalb des vom Laser erzeugten Plasmas vorherrschen", erklärt der Physiker. Damit ist eine wichtige Voraussetzung erfüllt, um Laser zur Beschleunigung polarisierter Teilchen einzusetzen. Ob dies tatsächlich funktioniert, soll sich nun im Laufe des Jahres zeigen.

Die zugrundeliegenden Streuexperimente haben die Wissenschaftler an der Universität Düsseldorf durchgeführt und anschließend mit Ergebnissen verglichen, die mit konventionellen Teilchenbeschleunigern gewonnen wurden. Der Arcturus-Laser, der bei den Versuchen zum Einsatz kam, liefert hochintensive Terawatt-Pulse. Mit ihm werden Teilchen auf einige MeV beschleunigt. „Um die Intensität im Fokus mit gewöhnlichem Licht zu erzielen, müsste man das gesamte Licht, das von der Sonne auf die Erde fällt, auf eine Bleistiftspitze bündeln", verdeutlicht Oswald Willi vom Düsseldorfer Institut für Laser- und Plasmaphysik. „Ein Laserpuls ist dafür aber auch nur extrem kurz und dauert nicht viel länger als eine Billiardstel Sekunde."

Die gemessene Polarisation beschreibt die Ausrichtung der Spins. Normalerweise zeigen die Spins von Atomen, Atomkernen und Elektronen statistisch gleichmäßig in alle Richtungen. Sind die Spins dagegen gleich ausgerichtet, spricht man von einem polarisierten Teilchenstrahl. Dessen Eigenschaften bieten mehrere Vorteile. Die Polarisation reduziert die Anzahl der Freiheitsgrade bei kernphysikalischen Experimenten. Das erhöht die Aussagekraft der gemessenen Werte. Und es kann die Wahrscheinlichkeit – den sogenannten Wirkungsquerschnitt –, dass eine Reaktion zwischen zwei aufeinander treffenden Teilchen, stattfindet erhöhen.

„Aus der Vergrößerung des Wirkungsquerschnitts können sich völlig neue Anwendungsmöglichkeiten ergeben", erläutert Markus Büscher. „Insbesondere die Energieausbeute von Fusionsreaktoren, zum Beispiel vom ITER-Typ, ließe sich mit polarisierten Teilchen um ein Vielfaches steigern." Die Entwicklung von Fusionsreaktoren zielt darauf ab, aus der Verschmelzung von Atomkernen Energie zu gewinnen. Ähnliche Prozesse finden auch im Innern der Sonne statt. Wenn es gelingt, sie eines Tages auf der Erde zu kontrollieren, kann die Fusion praktisch unerschöpfliche Mengen an sicherer und günstiger Energie liefern.

FZ Jülich / PH

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen