Blick in Planetenkrippe
Very Large Telescope nimmt jungen Exoplaneten im Geburtsstadium auf.
Wissenschaftler des Max-Planck-
Abb.: Nah-Infrarot-Aufnahme der PDS70-Scheibe aufgenommen mit dem SPHERE-Instrument. Der junge Exoplanet ist als helles Signal am inneren Rand der Lücke (dunkler Bereich) zu erkennen. (Bild: ESO / A. Müller, MPIA)
Die Suche nach Exoplaneten hat bislang etwa 3800 Exemplare mit unterschiedlichsten Größen, Massen sowie Abständen von ihren Muttersternen zutage gefördert. Wie sie entstehen, weiß man aber nicht genau. Zwar verfügen die Forscher über Theorien und Modelle möglicher Entstehungsszenarien. Jedoch war es bislang kaum möglich, Planeten im Zustand ihrer Entstehung nachzuweisen, den Entstehungsprozess direkt zu untersuchen und seine Eigenschaften mit den Berechnungen der Modelle zu vergleichen.
Genau das ist Astronomen nun gelungen. Der Planet PDS 70 b wurde in einer Entfernung von 22 Astronomischen Einheiten (AE) von seinem Zentralgestirn PDS 70 entdeckt. Er ist damit 22 Mal soweit von der Sonne entfernt wie die Erde. „Wir haben uns für unsere Untersuchung mit PDS 70 einen Stern ausgesucht, bei dem man bereits vermutete, dass dort ein junger Planet seine Kreise ziehen könnte“, erzählt Miriam Keppler, Doktorandin am MPIA.
PDS 70, ein 5,4 Millionen Jahre junger so genannter T-Tauri-
In einer anschließenden Untersuchung unter der Leitung von André Müller konnte die Gruppe der Astronomen ein spektakuläres Bild des PDS 70-
Tatsächlich zeigt die Analyse, dass PDS 70 b ein riesiger Gasplanet mit mehreren Jupitermassen und einer Temperatur von etwa 1200 Kelvin ist. Er ist damit ungleich heißer als jeder Planet in unserem Sonnensystem. PDS 70 b ist jünger als der zentrale Stern und dürfte nach wie vor wachsen. Die Daten zeigen außerdem, dass der Planet von Wolken umgeben ist, die die Strahlung des Planetenkerns und seiner Atmosphäre modifizieren. „Aufgrund der neuen Entfernungsdaten, die der Gaia-
Um protoplanetare Scheiben sichtbar zu machen, wenden die Forscher raffinierte Beobachtungs- und Auswerteverfahren an. Auf normalen Aufnahmen überstrahlt der Stern alle Objekte in seinem direkten Umfeld. Mit dem Sphere-
Vom Licht des Sterns erhält man dagegen unabhängig von der Filterkonfiguration immer ein Signal. Dieser Unterschied erlaubt es den Astronomen, das direkte Sternenlicht aus den Daten herauszurechnen. Unterstützt wird die Operation durch eine weitere Methode: die Astronomen decken den Stern mit einer Blende ab. Übrig bleibt ein Abbild der Scheibe.
„Nach zehn Jahren der Entwicklung neuer, leistungsstarker astronomischer Instrumente wie Sphere zeigt uns diese Entdeckung, dass wir endlich in der Lage sind, Planeten direkt bei ihrer Entstehung zu finden und zu studieren. Ein lang gehegter Traum wird wahr“, schließt Thomas Henning, Direktor am MPIA.
MPIA / DE