01.03.2010

Chamäleon im All

Chemiker und Physiker entschlüsseln gemeinsam Strukturgeheimnisse von wandelbaren Molekülen.



Chemiker und Physiker entschlüsseln gemeinsam Strukturgeheimnisse von wandelbaren Molekülen.

Was es alles in den unendlichen Weiten des Weltalls gibt, ist unklar. Etwas Licht ins Dunkel brachte kürzlich das Team von Dominik Marx vom Lehrstuhl für Theoretische Chemie der RUB in Kooperation mit dem Physikalischen Institut der Universität zu Köln und dem FOM Institut für Plasmaphysik in Rijnhuizen (Niederlande). Die Forscher untersuchten die Bewegungen der Wasserstoffatome in protoniertem Methan (CH5+), das in interstellaren Wolken vorkommt und permanent seine Struktur ändert.

Abb.: Tieftemperaturionenspeicher mit Infrarotspektrum von CD4H+ (Bild: Ruhr-Universität Bochum)

Mit Hilfe einer Kombination von molekulardynamischen Simulationen und Experimenten fanden sie heraus, wie die Bewegungen im Molekül beeinflusst werden, wenn Wasserstoff durch seinen schweren Bruder Deuterium ersetzt wird.

In den meisten Molekülen haben alle Atome ihre festen Plätze, doch in protoniertem Methan befinden sich fünf Wasserstoffatome in ständiger Bewegung um einen Kohlenstoffkern. Diese Bewegung ist nicht vollkommen zufällig, sondern die Wasserstoffatome sortieren sich bevorzugt in eine Zweiergruppe (H2) und ein Dreibein (CH3). Weitaus weniger bekannt war über die Bewegungen in ähnlichen Molekülen (Isotopologen), in denen ein oder mehrere Wasserstoffatome durch Deuterium ersetzt sind, das auch in schwerem Wasser vorkommt. Gemeinsam mit ihren Kooperationspartnern erforschten die RUB-Chemiker die Lieblingsplätze von Deuterium und Wasserstoff im Molekül.

Um den Lieblingsplätzen auf die Spur zu kommen, tauschten die Wissenschaftler schrittweise die Wasserstoffatome gegen Deuterium aus und zeichneten für jedes Isotopolog ein Infrarotspektrum auf, das Auskunft über die Bewegungen im Molekül gibt. Hierzu wurden die Moleküle in einem Ionenspeicher festgehalten, auf tiefe Temperaturen gekühlt und mit dem Infrarotlaser des FOM-Instituts für Plasmaphysik beleuchtet. Die so gewonnenen Spektren unterschieden sich erheblich für die verschiedenen Isotopologe. Erst durch spezielle Computersimulationen der Bochumer Chemiker war es möglich, diese Daten zu interpretieren. Eine einfache Simulation nach den Gesetzen der klassischen Mechanik reichte hierfür nicht aus, sondern die Quantennatur der Kerne musste mit berücksichtigt werden. So konnten die Forscher zeigen, dass das Deuterium sich bevorzugt im Dreibein und der Wasserstoff bevorzugt in der Zweiergruppe des Moleküls aufhält.

Die Ergebnisse der Bochumer Chemiker und ihrer Kooperationspartner sind nicht auf protoniertes Methan und seine Isotopologe beschränkt. Da es eine ganze Klasse von Molekülen gibt, in denen Atome ihre Plätze tauschen, werden die neuen Daten helfen, auch ihren Geheimnissen auf die Spur zu kommen.

Ruhr-Universität Bochum


Weitere Infos

 AL

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen