10.06.2013

CryoLaser: Energiequellen der Zukunft

Neuartige Diodenlaser für Ultrahochleistungslaser-Anwendungen als Highlight auf der CLEO in San Jose.

Hochleistungslaseranwendungen der Zukunft – darauf zielen aktuelle Entwicklungen zu Diodenlasern aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH). Weltweit arbeiten Forscherteams zurzeit an einer neuen Generation von Ultrahochleistungslasern. Sie sind Arbeitsmittel für die Grundlagenforschung, für neuartige Anwendungen in der Medizin und nicht zuletzt Basis für die laserinduzierte Fusion. Als saubere und hocheffiziente Energiequellen könnten Großanlagen, die diese Technologie nutzen, künftig die Energieversorgung der Menschheit sichern.

Abb.: Schema der geplanten Diodenlaser (Bild: FBH)

Ultrahochleistungslaser erfordern nicht nur extrem leistungsfähige, sondern auch in riesiger Stückzahl kostengünstig hergestellte Diodenlaser. Das entsprechende Design und die Technologie optimiert das FBH im Rahmen des Leibniz-Projektes CryoLaser. Eine höhere Leistungsdichte ist dabei unerlässlich, um die Kosten pro Photon zu senken – so verringert sich der Materialeinsatz. Dazu müssen Wirkungsgrad und Materialqualität erheblich verbessert werden. Das neuartige Konzept nutzt innovative Designs, die für den Laserbetrieb unter dem Gefrierpunkt (genauer: –73 °C / 200 K) optimiert sind. In diesem Temperaturbereich lässt sich die Leistungsfähigkeit von Diodenlasern deutlich steigern.

Aktuelle Ergebnisse aus CryoLaser präsentiert der FBH-Wissenschaftler Paul Crump in seinem eingeladenen Vortrag am 12. Juni bei der CLEO in San Jose, USA. Das hochaktuelle Thema wurde vom Veranstalter zudem für die zentrale Presseveranstaltung ausgewählt. Die Ergebnisse konzentrieren sich auf Laserbarren im Wellenlängenbereich von 930 bis 970 nm. Derartige Diodenlaser sind die Grundbausteine für Pumpquellen von Ytterbium-dotierten Kristallen in Großlaseranlagen, in denen ein gepulster Lichtstrahl mit Peta-Watt Leistungsspitze im Pikosekunden-Bereich erzeugt wird. Die einzelnen Laserbarren dieser Pumpquellen emittieren 1,2 Millisekunden lange optische Pulse mit einer bisher typischen Leistung im Bereich von 300 bis 500 Watt. Erste Tests von FBH-Laserbarren bei –50 °C ergaben weltweite Bestwerte von 1,7 Kilowatt (kW) Spitzenleistung pro Barren, das entspricht einer Pulsenergie von je 2 Joule. Bislang konnte diese Pumpenergie nur durch Bündelung der Strahlung von mindestens fünf Laserbarren erreicht werden. Aktuell arbeitet das FBH-Team an der Steigerung des elektro-optischen Wirkungsgrades von derzeit 50 % bei der angestrebten Betriebsleistung von 1,6 kW pro Barren auf Werte über 80 %.

Das FBH deckt in diesem Forschungsprojekt die komplette Wertschöpfungskette ab, vom Design bis zu ersten Prototypen, die an Partner geliefert werden. Wie bereits in früheren Forschungsarbeiten werden die Pumpquellen gemeinsam mit den weltweit führenden Gruppen evaluiert, die sich mit Ultrahochleistungslasern für die laserinduzierte Kernfusion beschäftigen: LIFE in den USA, HiPER in Europa.

FBH / CT

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen