Datenspeicher aus einzelnen Molekülen
Dysprosium-Atome behalten ihre Magnetisierungsrichtung.
Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Damit könnten auf kleinstem Platz riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit nur ein einziges Atom oder ein kleines Molekül bräuchte. Theoretisch ist dies möglich, denn bestimmte Atome lassen sich so magnetisieren, dass die Magnetisierung nur zwei Richtungen annehmen kann. In der Abfolge der Magnetisierungsrichtung vieler Moleküle liessen sich so Informationen speichern.
Abb.: Die Magnetisierung von Dysprosium-Atomen (grün) auf der Nanopartikel-Oberfläche kann genau zwei Richtungen annehmen. (Bild: ETHZ / U. Rennes)
Auf dem Weg zu Einzelmolekülmagnet-Datenspeichern gibt es allerdings noch einige Hürden zu überwinden. Moleküle zu finden, die die magnetische Information nicht nur kurzfristig, sondern auch dauerhaft speichern, ist nicht einfach. Und noch schwieriger ist es, solche Moleküle für den Bau von Datenspeichern auf einer festen Unterlage anzuordnen. Für letzteres hat die Arbeitsgruppe nun eine neue Methode geschaffen, die gegenüber anderen Ansätzen zahlreiche Vorteile bietet.
Christophe Copéret, Professor am Laboratorium für Anorganische Chemie, und sein Team entwickelten ein Molekül, in dessen Zentrum ein Dysprosium-Atom sitzt. Umgeben ist dieses Atom von einem Molekülgerüst, das als Transportvehikel dient. Außerdem entwickelten die Wissenschaftler eine Methode, um die Moleküle auf der Oberfläche von Siliziumdioxid-Nanopartikeln zu deponieren und mit diesen bei 400 Grad Celsius zu fusionieren. Das Transportgerüst zerfällt dabei, es entstehen Nanopartikel, deren Oberfläche mit einzelnen freistehenden Dysprosium-Atomen durchsetzt ist. Wie Tests ergaben, können diese Atome magnetisiert werden und sie behalten ihre Magnetisierungsrichtung aufrecht.
Die Magnetisierung funktioniert derzeit nur bei rund minus 270 Grad Celsius. Sie hält maximal etwas mehr als eineinhalb Minuten an. Die Wissenschaftler suchen daher nach Ansätzen, die Magnetisierung auch bei höheren Temperaturen und über längere Zeit stabil zu halten. Und sie sind auf der Suche nach Methoden, die Atome statt mit Nanopartikeln mit einer flachen Unterlage zu fusionieren. Zu den Vorteilen der neuen Methode gehört, dass sie denkbar einfach ist. „Dysprosium-bestückte Nanopartikel lassen sich in jedem Chemielabor herstellen. Es braucht dazu weder einen Reinraum noch komplexe Apparaturen“, sagt Florian Allouche, Doktorand in Copérets Gruppe. Außerdem können die magnetisierbaren Nanopartikel bei Raumtemperatur aufbewahrt werden und sind wiederverwendbar.
Alternative Herstellungsmethoden bestehen zum Beispiel darin, eine Fläche mit einzelnen Atomen zu bedampfen. So hergestellte Materialen sind jedoch nur bei sehr tiefen Temperaturen stabil. Oder es können Moleküle mit idealen magnetischen Eigenschaften auf eine Unterlage gebracht werden. Bei diesem Prozess werden die magnetischen Eigenschaften jedoch oft negativ beeinflusst.
ETHZ / JOL