14.07.2023 • Energie

Der Weg zum klimaneutralen Fliegen

Synthetische Treibstoffe und Reduktion des Flugverkehrs sind beide notwendig.

Die EU soll bis 2050 klimaneutral werden. Dies hat das EU-Parlament 2021 vorgegeben. Die Schweiz verfolgt dieses Ziel ebenfalls. Dazu soll der Flugsektor, der 3,5 Prozent der globalen Klima­erwärmung verursacht, seinen Teil beitragen – zumal der Ausstoß an klimarelevanten Gasen beim Fliegen pro Personen- oder Fracht­kilometer zwei bis dreimal höher ist als in anderen Verkehrs­sektoren. Die Internationale Zivilluft­fahrt­organisation IACO und viele Airlines haben daher angekündigt, bis 2050 die CO2-Emissionen auf null zu reduzieren beziehungsweise Klima­neutralität anzustreben.

 

Abb.: Christian Bauer, Wissenschaftler im Labor für Energie­system-Analyse am...
Abb.: Christian Bauer, Wissenschaftler im Labor für Energie­system-Analyse am PSI (Bild: PSI / M. Fischer)

In einer neuen Studie haben Forscher des PSI und der ETH Zürich nun berechnet, ob und wie dies zu erreichen wäre. „Eine wichtige Frage dabei ist, was eigentlich genau mit null CO2 beziehungsweise Klima­neutralität gemeint ist“, sagt Romain Sacchi vom Labor für Energie­system­analysen des PSI, einer der beiden Hauptautoren der Studie. Wenn nur die CO2-Emissionen des Fliegens selbst gemeint seien, so ergänzt seine Co-Autorin Viola Becattini von der ETH Zürich, greife das viel zu kurz. Denn wenn man davon ausgeht, dass der Flugverkehr weiterhin wächst wie bisher, dann machen die reinen CO2-Emissionen der Flüge laut den Berechnungen bis 2050 nur etwa zwanzig Prozent des gesamten Klimaeffekts aus. Um den gesamten Flugbetrieb klimaneutral zu bekommen, dürften neben dem Fliegen nämlich auch die Produktion des Treibstoffs und die gesamte Luftfahrt-Infrastruktur das Klima nicht weiter belasten.

Dies, so hat die Studie ergeben, ist durch die bislang verfolgten Maßnahmen zum Klimaschutz im Flugbetrieb bis 2050 allerdings nicht zu schaffen. „Neue Antriebe, klima­schonende Treibstoffe und das Herausfiltern von CO2 aus der Atmosphäre, um es unterirdisch zu speichern (Carbon Capture and Storage, kurz: CCS) werden uns allein nicht ans Ziel bringen“, sagt Marco Mazzotti, Professor für Verfahrenstechnik an der ETH. „Wir müssen zusätzlich den Flugverkehr reduzieren.“

Für ihre Studie haben Sacchi und Becattini verschiedene Szenarien durchgespielt. Zum einen zeigte sich dabei, dass der Klimaeffekt durch die Infrastruktur, also den Bau der Flugzeuge sowie Bau und Betrieb der Flughäfen, zwar einkalkuliert werden muss, er jedoch insgesamt in der Zeit bis 2050 und darüber hinaus vergleichsweise gering ausfällt. Die Klimaeffekte des Fliegens selbst und der Emissionen durch Herstellung des Treibstoffes sind weitaus größer. Das war soweit nichts Neues.

Weniger klar war zuvor die wichtige Rolle sogenannter Nicht-CO2-Effekte, die neben den reinen CO2-Emissionen auftreten: Der größere Teil des Treibhauseffekts beim Fliegen entsteht nämlich nicht durch den Kohlenstoff, der über die Kerosin­verbrennung in die Atmosphäre gelangt, sondern durch ebenfalls frei werdende Rußpartikel und Stickoxide, die in der Luft zu Methan und Ozon reagieren, Wasserdampf und die Kondens­streifen, die zur Bildung von Zirruswolken in der oberen Atmosphäre führen. „Diese Faktoren werden bislang in vielen Analysen und Net-Zero-Versprechen außer Acht gelassen“, sagt Romain Sacchi. „Oder nicht korrekt berechnet.“

Üblich ist es, solche Emissionen und Effekte in CO2-Äquivalente umzurechnen, um sie in die Bilanz einzubeziehen. „Doch die bisher dazu verwendeten Methoden und Werte haben sich als unzutreffend erwiesen“, sagt Marco Mazzotti. „Wir sind deshalb präziser vorgegangen.“ Die dabei angewendeten Verfahren berücksichtigen vor allem einen wesentlichen Unterschied zwischen den verschiedenen Faktoren: Die Nicht-CO2-Effekte sind viel kurzlebiger als CO2, sie werden daher auch „Short Lived Climate Forcers“, kurz SLCF genannt – also kurzlebige Klimatreiber. Während von dem emittierten Kohlendioxid etwa die Hälfte von Wäldern und Ozeanen absorbiert wird, bleibt die andere Hälfte für Tausende von Jahren in der Luft, verteilt sich und wirkt als Treibhausgas.

Methan dagegen zum Beispiel ist viel klimawirksamer, baut sich aber binnen weniger Jahre ab, Kondensstreifen und daraus resultierende Wolken verflüchtigen sich gar in wenigen Stunden. „Das Problem ist, dass wir durch den zunehmenden Flugverkehr ständig mehr SLCF produzieren, sodass sie sich summieren, anstatt schnell wieder zu verschwinden. Dadurch entfalten sie ihr gewaltiges Treibhaus­potenzial dann doch über längere Zeiträume“, sagt Viola Becattini. Das sei wie in einer Badewanne, bei der sowohl der Abfluss als auch der Wasserhahn geöffnet ist: Solange der Wasserhahn mehr Wasser reinlässt, als durch den Abfluss entweichen kann, wird die Wanne immer voller – und irgendwann schwappt sie über.

„Dieses Bild zeigt uns allerdings auch: Wir haben mit dem Flugaufkommen den entscheidenden Hebel in der Hand“, betont Romain Sacchi. „Indem wir weniger statt mehr fliegen, also quasi den Wasserhahn zu- statt aufdrehen, können wir die Atmosphäre regelrecht kühlen und den Treibhauseffekt des Flugverkehrs tatsächlich Richtung null drücken.“ Was nicht bedeutet, dass wir den Flugbetrieb komplett einstellen müssen. Die Berechnungen der Studie zeigen: Wenn die Luftfahrt bis 2050 Klima­neutralität erreichen will, muss sie – im Zusammenspiel mit der Kohlendioxid-Speicherung im Untergrund – den Flugverkehr jedes Jahr um 0,8 Prozent verringern, falls wir bei fossilen Treibstoffen bleiben. Er läge dann 2050 bei etwa achtzig Prozent des heutigen Aufkommens. Wenn es gelingt, auf klimaschonendere Treibstoffe, die auf Strom aus erneuerbaren Energien basieren, umzustellen, reichen 0,4 Prozent pro Jahr.

Diese neuen Treibstoffe hat die Studie ebenfalls genauer betrachtet. Forscher weltweit arbeiten daran, die herkömmlichen erdölbasierten Antriebe zu ersetzen. Ähnlich dem Straßen­verkehr könnte das durch Elektro­batterien, Brennstoff­zellen oder direkte Verbrennung von Wasserstoff geschehen. Deren Energiedichte reicht allerdings nur für kleine Flugzeuge auf kurzen Strecken, im Fall von Wasserstoff auch für mittelgroße auf mittleren Strecken. Den Hauptteil des weltweiten Flug­aufkommens und der Treibhaus­gasemissionen in der Luftfahrt machen jedoch große Flugzeuge auf der Langstrecke mit mehr als 4000 Kilometern aus.

Hinzu kommt, dass in der Luftfahrt die Antriebs­technologien auf elektrischer oder Wasserstoff­basis bei Weitem noch nicht reif für einen breiten Einsatz sind. Als großer Hoffnungsträger der Branche gilt daher Sustainable Aviation Fuel (SAF). Dabei handelt es sich um künstliches KerosiExtremely Large Telescope, Europäische Südsternwarten, welches das erdölbasierte mehr oder minder eins zu eins ersetzen könnte, ohne das Turbinen und Flugzeuge neu konstruiert werden müssen.

SAF können aus CO2 und Wasser über eine Produktions­kaskade hergestellt werden. Das CO2 lässt sich per Air-Capture-Verfahren aus der Luft einfangen, Wasserstoff kann durch Elektrolyse aus Wasser gewonnen werden. „Werden die dazu nötigen Prozesse ausschließlich mit erneuerbarer Energie betrieben, ist SAF so gut wie klimaneutral“, sagt Christian Bauer vom PSI-Labor für Energie­system­analysen, der an der Studie beteiligt war. „Das macht uns unabhängiger von fossilen Energieträgern.“ Ein weiterer Vorteil von SAF: Bei seiner Verbrennung entstehen weniger SLCF, die man kompensieren muss, indem entsprechende Mengen CO2 aus der Luft abgeschieden und unterirdisch eingelagert werden. Das ist auch deshalb relevant, weil die Speicher­kapazitäten für CO2 begrenzt und nicht nur der Luftfahrt­branche vorbehalten sind.

Doch SAF hat auch einen Nachteil, denn der Energieaufwand zur Herstellung ist weitaus größer als bei herkömmlichem Kerosin. Das liegt vor allem daran, dass die Wasserstoff­produktion per Elektrolyse viel Strom braucht. Und dass bei jedem Produktionsschritt – Air Capture, Elektrolyse, Synthetisierung – Energieverluste auftreten. Der hohe Stromverbrauch wiederum bedingt einen erheblichen Einsatz von Ressourcen wie Wasser und Land. Zudem ist SAF teuer: Nicht nur der Strombedarf, sondern auch die Kosten der CO2-Abscheidung und Elektrolyse-Anlagen machen ihn etwa vier- bis siebenmal teurer als normales Kerosin. Mit anderen Worten: Der umfassende Einsatz von SAF macht CO2-neutrales Fliegen möglich, kostet aber mehr Ressourcen und Geld. Das Fliegen wird also noch teurer, als es ohnehin schon werden muss, um Klimaziele zu erreichen. „Wer heute ein Ticket kauft, kann seinen Flug gegen ein paar Euro Aufschlag angeblich CO2-neutral machen, indem dieses Geld in den Klimaschutz investiert wird“, sagt Romain Sacchi. „Das ist allerdings Augenauswischerei, denn viele dieser Kompensations­maßnahmen sind wirkungslos. Um die tatsächliche Klimawirkung umfassend auszugleichen, müsste ein Ticket im Vergleich zu heute etwa das Dreifache kosten.“

„Eine derart heftige Preis­steigerung sollte die Nachfrage nach Flügen in der Tat erheblich senken und uns dem Ziel der Klimaneutralität näher bringen“, sagt Viola Becattini. Außerdem sei zu erwarten, dass die Produktion von SAF im Laufe der Jahre mit zunehmender Menge günstiger und effizienter wird, was sich positiv auf die Klimabilanz auswirkt. Die Studie hat solche Dynamiken berücksichtigt – auch, dass sich der Strommix zur Produktion von SAF verändert. Das unterscheidet sie von den meisten anderen Analysen.

„Unterm Strich gibt es für das Ziel, bis 2050 Klimaneutralität in der Luftfahrt zu erreichen, kein Wundermittel“, sagt Sacchi. „Wir können nicht so weitermachen wie bisher. Doch wenn wir die Infrastruktur zur unter­irdischen Speicherung von CO2 und zur Produktion von SAF zügig und effizient weiterentwickeln und gleichzeitig unseren Flugbedarf einschränken, kann es gelingen.“

PSI / DE

 

Weitere Infos

Jobbörse

Physik Jobbörse in Freiburg und Berlin
Eine Kooperation von Wiley und der DPG

Physik Jobbörse in Freiburg und Berlin

Freiburg, 13.-14.03.2024, Berlin, 19.-21.03.2024
Die Präsentationen dauern jeweils eine Stunde, am Ende der Veranstaltung ist Zeit für Q&A eingeplant.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen