25.11.2020

Durchleuchtete Metamaterialien

Licht-Materie-Wechselwirkungen offenbaren nanophotonische Details nanostrukturierter Materalien.

Physiker der Universität Konstanz, der Ludwig-Maxi­milians-Universität München (LMU München) und der Universität Regensburg haben experimentell nachgewiesen, dass ultrakurze Elektronen­pulse durch die Interaktion mit Lichtwellen in nano­photonischen Materialien eine quanten­mechanische Phasen­verschiebung erfahren. Damit lässt sich die Funktionsweise von Nano­materialien bei Licht­einstrahlung direkt sichtbar machen.

Abb.: Zeitauf­gelöste Elektronen­beugung an optisch angeregten...
Abb.: Zeitauf­gelöste Elektronen­beugung an optisch angeregten Meta­materialien. (Bild: K. Mohler, LMU)

Metamaterialien zeigen neuartige optische Effekte zur Entwicklung von besonders effizienten Solarzellen, Tarnkappen oder Katalysatoren. Diese Materialien erzielen ihre außer­gewöhnlichen Eigenschaften durch eine rasterförmige Anordnung kleinster Bausteine auf Längenskalen deutlich unterhalb der Wellenlänge des Anregungslichtes. Um solche Meta­materialien charakterisieren und weiter­entwickeln zu können, müssen die Wissenschaftler verstehen, wie sich die einfallenden Lichtwellen an den kleinen Strukturen verhalten und mit ihnen interagieren. Folglich müssen die optisch angeregten Nano­strukturen und ihre elektro­magnetischen Nahfelder sowohl mit einer räumlichen Auflösung im Bereich von Nanometern als auch mit einer zeitlichen Auflösung unterhalb des Anregungszyklus (~10-15 s) vermessen werden. Die herkömmliche Licht­mikroskopie allein gelangt hier jedoch an ihre Grenzen.

Aber Elektronen bieten eine 100.000-fach bessere räumliche Auflösung als Licht. Darüber hinaus dienen Elektronen mittels ihrer Ladung auch als Sensoren für elektro­magnetische Felder und Potentiale. Jetzt gelang es einem Team unter der Leitung von Peter Baum, extrem kurze Elektronen­impulse erfolgreich für eine derartige Messung einzusetzen. Die Dauer der Elektronen­impulse wurde dafür mittels Terahertz-Strahlung in der Zeit so stark komprimiert, dass die Forschenden die optischen Schwingungen der elektro­magnetischen Nahfelder an den Nanostrukturen detailliert auflösen konnten. „Die Heraus­forderung bei diesem Experiment besteht in der hohen Auflösung, die gleichzeitig in Raum und Zeit gewährleistet werden muss. Um Raumladungs­effekte zu vermeiden, verwenden wir nur einzelne Elektronen pro Impuls und beschleunigen diese Elektronen auf Energien von 75 Kiloelek­tronenvolt“, sagt Baum.

Werden diese extrem kurzen Elektronen­impulse an den Nano­strukturen gestreut, inter­ferieren sie aufgrund ihrer quanten­mechanischen Eigenschaften mit sich selbst und erzeugen ein Beugungsbild der Probe. Die optische Anregung der Nano­strukturen wird nach dem Pump-Probe-Prinzip untersucht. Nach der optischen Anregung der Nahfelder kommt zu einem definierten Zeitpunkt der ultrakurze Elektronen­impuls und misst die zeitlich eingefrorenen Felder in Raum und Zeit. „Gemäß den Vorhersagen von Aharonov und Bohm verschiebt sich die quanten­mechanische Phase der Wellen­funktion der Elektronen, wenn sie durch elektromagnetische Potentiale fliegen“, sagt Kathrin Mohler, Doktorandin an der LMU München.

Diese optisch induzierten Phasen­verschiebungen liefern einen Einblick in die ultraschnelle Lichtdynamik an den Nanostrukturen, so dass letztlich eine filmartige Bildersequenz von der Wechsel­wirkung des Lichts mit den Nanostrukturen entsteht. Diese Experimente zeigen auf, wie sich in Zukunft mit der Elektronen­holografie und -beugung die grundlegenden Licht-Materie-Wechselwirkungen in nano­photonischen Materialien und Meta­materialien besser verstehen lassen. Dadurch könnten kompakte Optiken, neuartige Solarzellen oder effiziente Kata­lysatoren entwickelt und optimiert werden.

U. Konstanz / JOL

Weitere Infos

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen