Ein Halbleiter-Quantenprozessor „Made in Germany“
Projekt QUASAR soll die Grundlagen für eine industrielle Fertigung der Quantenprozessoren schaffen.
Das Rennen um den Bau von Quantencomputern ist im vollen Gange. In der Grundlagenforschung auf diesem Gebiet gehört Deutschland zur Weltspitze. Ein Zusammenschluss des Forschungszentrums Jülich mit dem Halbleiter-Hersteller Infineon will die Ergebnisse nun gemeinsam mit Instituten der Fraunhofer-Gesellschaft, der Leibniz-Gemeinschaft, den Universitäten in Regensburg und Konstanz sowie dem Quanten-Startup HQS in die Praxis bringen. Ziel ist ein Halbleiter-Quantenprozessor „Made in Germany“, der auf dem „Shutteln“ von Elektronen basiert und mit in Deutschland verfügbarer Technologie realisiert werden soll. Das mit über 7,5 Millionen Euro vom Bundesministerium für Bildung und Forschung geförderte QUASAR-Projekt soll in den nächsten vier Jahren die Grundlagen für die industrielle Fertigung der Quantenprozessoren schaffen.
Noch ist offen, welcher Ansatz den Wettlauf zum Quantenrechner für sich entscheiden wird. Versuche mit supraleitenden Qubits sind am weitesten entwickelt. Auf ihnen beruhen zum Beispiel Googles Quantenchips und der experimentelle Quantencomputer im europäischen Quantenflaggschiff-Projekt, der in diesem Jahr am Forschungszentrum Jülich in Betrieb gehen soll. Doch wenn es um große Qubit-Zahlen geht, haben möglicherweise Halbleiter-Qubits die Nase vorn.
„In Jülich untersuchen wir beide Qubit-Typen, Halbleiter und Supraleiter. Starke Synergieeffekte gibt es beispielsweise bei der Entwicklung von Quantensoftware, der Bauteil-Entwicklung und deren Integration in experimentelle Rechnerarchitekturen“, sagt Wolfgang Marquardt, Vorstandsvorsitzender des Forschungszentrums Jülich. „Langfristig wollen wir in Jülich einen frei zugänglichen Quantencomputer für die Wissenschaft realisieren. Das QUASAR-Projekt ist für dieses Vorhaben ein wichtiger Schritt – in Kombination mit unseren weiteren Aktivitäten, etwa im europäischen Quanten-Flaggschiff oder bei der Erforschung von Quantenmaterialien.“
Ein vielversprechendes System für Halbleiter-Qubits sind Elektronenspin-Qubits in Silizium, weil sie vergleichsweise stabile Quanteneigenschaften aufweisen und im Aufbau viel kleiner sind als supraleitende Quantenbits. „Ein großer Pluspunkt ist: Die Herstellung ist in weiten Teilen kompatibel mit der Produktion von Silizium-Prozessoren. Das heißt, mit den Fertigungsprozessen gibt es im Prinzip schon viel Erfahrung“, erklärt Projektleiter Hendrik Bluhm, Direktor am JARA-Institut für Quanteninformation des Forschungszentrums Jülich. Beispielsweise bei Infineon am Standort Dresden: Der deutsche Halbleiter-Hersteller steht mit seinen Produktionslinien im Projekt Modell, um Anpassungsmöglichkeiten des Bauelemente-Designs für die industrielle Fertigung zu untersuchen.
„Es sind noch grundlegende Fragen zu klären. Quantenchips ließen sich bislang nicht so einfach hoch skalieren wie klassische Computerchips. Ein Problem dabei waren geometrische Beschränkungen. Die Qubits müssen normalerweise sehr nahe beieinander liegen, um sie miteinander zu koppeln. Bisher wurden Halbleiter-Qubits daher vorrangig in Bauteilen demonstriert, die nicht mehr als zwei dicht nebeneinanderliegende gekoppelte Qubits aufweisen. Für eine skalierbare Architektur benötigen wir dagegen mehr Platz auf dem Quantenchip, etwa für Zuleitungen und Kontrollelektronik“, sagt Bluhm.
Um die Abstände zu vergrößern, haben die Forscher der JARA-Kooperation des Forschungszentrums Jülich und der RWTH Aachen gemeinsam mit weiteren Forschungspartnern einen Quantenbus entwickelt. Dabei handelt es sich um spezielle Verbindungselemente, die es möglich machen, Distanzen von bis zu zehn Mikrometern zwischen den einzelnen Qubits effizient zu überbrücken. Die Quanteninformation wird bei Silizium-Qubits durch den Spin von Elektronen kodiert, die in Quantenpunkten sitzen. Der Quantenbus ermöglicht es, die Elektronen auf den Quantenpunkten einzufangen und kontrolliert zu transportieren, ohne dass die Quanteninformation verloren geht. Der Austausch der Elektronen wird auch als „Shutteln“ bezeichnet. Im Labor liefern Teststrukturen bereits vielversprechende Ergebnisse. Nun wollen die Forscher am FZ Jülich das Bauelement-Design an industrielle Herstellungsprozesse anpassen.
„Eine Herausforderung hierbei ist etwa der geforderte Reinheitsgrad, der für diesen Anwendungsfall um einiges höher ist als für die Fertigung konventioneller Computerchips“, erläutert Bluhm. „Ein weiterer offener Punkt ist die Miniaturisierung der Kontrollsysteme auf dem Chip. Grundsätzlich sehen wir in diesem Ansatz aber ein großes Potenzial für komplexe Schaltungen. Millionen von Qubits sind realistisch.“
Bis Januar 2025 läuft das QUASAR-Projekt noch. Als nächster Schritt ist dann der Bau eines Demonstrators mit etwa 25 gekoppelten Qubits geplant, welcher in einem Nachfolgeprojekt realisiert und über JUNIQ, die „Jülicher Nutzer-Infrastruktur für Quantencomputing“, mit Cloud-Zugang in die modulare HPC-Umgebung des Jülich Supercomputing Centers eingebunden werden soll.
FZ Jülich / RK
Weitere Infos
- Projekt QUASAR – Halbleiter-Quantenprozessor mit shuttlingbasierter skalierbarer Architektur, VDI Technologiezentrum GmbH, Düsseldorf
- JARA-Institut für Quanteninformation, Forschungszentrum Jülich