Viele chemische Schlüsselprozesse wie die Sauerstoffreduktion in Brennstoffzellen beruhen auf Nanokatalysatoren. Allerdings sind die katalytischen Reaktionen von Metall-Nanoclustern auf der atomaren Ebene noch nicht vollständig verstanden. Mithilfe der hochauflösenden aberrationskorrigierten Niederspannungs-Transmissionselektronenmikroskopie hat ein deutsch-britisches Forscherteam um Ute Kaiser von der Uni Ulm jetzt erstmals die Struktur-Eigenschaftsbeziehungen von 14 Übergangsmetallen verglichen und ihr katalytisches Verhalten in Echtzeit beobachtet. Das gelang den Forschern mit einem neuen experimentellen Aufbau mit Kohlenstoffnanoröhren als Testreaktoren. Weiterhin schlagen die Wissenschaftler eine Neuordnung der Übergangsmetalle, darunter Eisen, Platin und Chrom, im Periodensystem der Elemente für die Katalyse auf atomarer Ebene vor.
Abb.: Katalytische Wirkung von Nickel- und Platin-Metallnanoclustern auf die sich neu um Metallnanocluster bildenden Kohlenstoffstrukturen innerhalb einer Kohlenstoffnanoröhre. (Bild: U. Ulm)
Bei dem Verfahren dient der Elektronenstrahl nicht nur der Bildgebung, sondern auch als Energiequelle, die die Reaktion antreibt. Im Experiment werden so Beobachtungen der Nanokatalyse in atomarer Auflösung auf kurzer Zeitskala möglich. So gelang es dem Team, die Strukturänderungen der Metall-Nanocluster und die Bildung neuer Metall-Kohlenstoffbindungen in atomarer Auflösung nachzuvollziehen. Katalytische Reaktionen konnten die Forscher sogar in Echtzeit beobachten. „Unsere umfangreiche Untersuchung ermöglicht grundlegende Schlussfolgerungen für das Verständnis der Katalyse. Insgesamt legen unsere Ergebnisse eine neue Klassifikation der Übergangsmetalle im Periodensystem, ausgehend von ihrer katalytischen Aktivität, nahe“, sagt Kaiser.
Bei den mikroskopischen Untersuchungen spielen die Kohlenstoffnanoröhren, deren Wände nur ein bis zwei Nanometer dünn sind, eine Schlüsselrolle. Viele Metall-Nanocluster reagieren nämlich sehr empfindlich auf Luft, was vergleichende Analysen bisher erschwerte. Erst durch ihre Einbettung in die Kohlenstoffnanoröhren, die 10.000-mal dünner als ein Haar und fester als Stahl sind, wurden die nun durchgeführten Untersuchungen möglich. „Unsere Studie zeigt, dass Metall-Nanocluster, die in Kohlenstoffröhrchen eingebettet sind, eine universelle Forschungsplattform für die metallorganische Chemie darstellen. Dieser experimentelle Aufbau ermöglicht den direkten Vergleich der Bindung und Reaktivität verschiedener Übergangsmetalle sowie die Aufklärung der Struktur-Eigenschaftsbeziehungen von Nanokatalysatoren. Unsere Erkenntnisse können also entscheidend zur Optimierung künftiger Katalysatoren beitragen“, sagt Elena Besley von der University of Nottingham.
Insgesamt konnte die he Forschergruppe zeigen, dass die Eigenschaft von Metallen durch ihre elektronische Struktur bestimmt wird. Ausgehend von ihren Untersuchungen schlagen sie zudem ein überarbeitetes Periodensystem der Übergangsmetalle auf der Nanoskala für die Katalyse vor. Die Ergebnisse sind für die Grundlagenforschung sowie für die Anwendung gleichermaßen bedeutsam. Zum einen haben die Forscher neue Erkenntnisse über die Wechselwirkung von Elektronenstrahl und Materie gewonnen. Zum anderen tragen sie zu einem tieferen Verständnis der Nanokatalyse bei und ermöglichen eine Vorhersage des Verhaltens von Übergangsmetallen bei katalytischen Reaktionen mit Kohlenstoff. Nach wie vor beruhen zahlreiche industrielle Prozesse auf der Katalyse und Schätzungen gehen davon aus, dass katalytische Reaktionen dreißig bis vierzig Prozent des globalen Bruttoinlandsprodukts ausmachen.
U. Ulm / RK