22.03.2010

Eine molekulare Bremse für den kleinsten Motor der Welt

Bakterien können trotz ihrer geringen Grösse mithilfe eines winzigen rotierenden Nanomotors unglaubliche Schwimmleistungen vollbringen - dabei steuert eine molekulare Motorbremse die Geschwindigkeit.

Bakterien können trotz ihrer geringen Grösse mithilfe eines winzigen rotierenden Nanomotors unglaubliche Schwimmleistungen vollbringen - dabei steuert eine molekulare Motorbremse die Geschwindigkeit.

Bakterien der Spezies Escherichia coli können, wie viele andere Keime auch, Nahrungsgradienten wahrnehmen und mit Hilfe rotierender Flagellen zu Orten höherer Nährstoffkonzentration schwimmen. Geht die Nahrung jedoch definitiv zur Neige, schwimmen die Keime immer langsamer. Bei diesem Phänomen spielen ein intrazellulärer Botenstoff namens cyclic-dimeric-GMP und ein Protein namens YcgR eine Rolle; es blieb jedoch unklar, ob diese das Schwimmtempo direkt beeinflussen oder beispielsweise den Reibungswiderstand der Zelloberfläche erhöhen. Einem Forscherteam aus Basel, Zürich, Heidelberg und Hannover unter der Leitung von Alex Böhm und Urs Jenal vom Biozentrum der Universität Basel konnte nun zeigen, dass die beiden Moleküle Teil einer ausgeklügelten Maschinerie sind, mit deren Hilfe E. coli seinen Flagellenmotor ganz gezielt drosseln kann.

 

 

Abb.: Rasterelektronenmikroskopische Aufnahme eines E. Coli-Bakteriums mit seinen Flagellen. (Bild: Biozentrum der Universität Basel) 

Bindet nämlich der Botenstoff an das YcgR-Protein, wird dieses zu einer Art molekularen Bremse: Es interagiert mit jenen Teilen des Motors, die den Rotor antreiben, und verlangsamt dadurch die Drehbewegung der Flagellen. Und da jeder Motor über eine Reihe solcher Antriebsproteine verfügt, kann das Schwimmtempo schrittweise gedrosselt werden, und zwar umso stärker, je mehr Antriebsproteine durch die molekulare Bremse blockiert werden.

Wie viele das sind, hängt von der Konzentration des Botenstoffs in der Zelle ab, und die wiederum korreliert mit der Nährstoffversorgung der Bakterien. Denn von den fünf Enzymen, die den Botenstoff produzieren beziehungsweise abbauen, werden immerhin drei gegen Ende der Wachstumsphase - wenn die Nährstoffe zur Neige gehen - an- respektive abgeschaltet. Die Forscher vermuten deshalb, dass dieser Mechanismus es den Bakterien erlaubt, ökonomischer mit den schwindenden Ressourcen umzugehen.

Die neue Arbeit zeigt aber nicht nur einmal mehr, zu welchen faszinierenden Leistungen Mikroorganismen in der Lage sind, sondern ist darüber hinaus auch etwa für die Nanotechnologie von Interesse. Die hat den bakteriellen Flagellenmotor bereits vor geraumer Zeit für sich entdeckt, schliesslich ist dieser mit einem Durchmesser von etwa 45 Nanometern um mehrere Grössenordnungen kleiner als die - im Hinblick auf Beweglichkeit, Leistung und Wirkungsgrad - deutlich schlechteren sogenannten Nanomotoren, die von Wissenschaftlern bislang gebaut wurden. Dass das Vorbild aus der Biologie nun auch noch fein reguliert werden kann, legt die Messlatte noch höher.

Universität Basel

Weitere Infos

AL

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen