Eine Schablone aus Wasser
Dünne Wasseroberflächen kontrollieren die Struktur kristalliner Monolagen.
Die Herstellung hochwertiger Monolagen ist für optoelektronische Bauteile wie organische Leuchtdioden, die heute in modernen Handys verwendet werden, von großer Bedeutung: Sowohl die Lebensdauer als auch die Energieeffizienz können hierdurch erhöht werden. Wissenschaftler des Max-Planck-Instituts für Polymerforschung haben nun in Zusammenarbeit mit der TU Dresden mit Hilfe von Lasern untersucht, wie Wasseroberflächen als eine Schablone für die regelmäßige Anordnung von Molekülen genutzt werden können und welche physikalisch-chemischen Mechanismen dahinter stecken.
Organische Leuchtdioden bestehen aus vielen dünnen Schichten, von denen einige nur ein Molekül dick sind. Die bereits in den 1980er Jahren entdeckte Nutzung von Wasseroberflächen zur Beeinflussung chemischer Reaktionen ist ein vielversprechender Ansatz zur Herstellung solcher Schichten. Wie ein Eierkarton bietet diese Methode die Möglichkeit, Moleküle selektiv in eine kristalline, regelmäßig angeordnete Struktur zu zwingen: Sie können nur dort sitzen, wo die Tenside auf der Wasseroberfläche es ihnen erlauben.
Bislang war unklar, welche physikalischen und chemischen Prozesse für diese Anordnung notwendig sind. Welche Rolle spielt zum Beispiel die Ladung des Tensids? Inwieweit müssen die Bindungsabstände auf der Wasseroberfläche mit denen des aufgebrachten Moleküls übereinstimmen? Yuki Nagata und sein Team sind diesen Fragen nachgegangen. Dazu nutzten sie das Molekül Polyanilin als Versuchsobjekt und untersuchten den Prozess der Anordnung auf der Wasseroberfläche mit Hilfe der Laserspektroskopie genauer.
Die Summenfrequenzspektroskopie ist dafür ideal geeignet, da sie nur Signale von der Grenzfläche und nicht vom darunter liegenden Wasser liefert. Mit ihrer Hilfe konnte das Team den Polymerisationsprozess über einen Zeitraum von mehreren Stunden abbilden und auch entstehende Zwischenstufen nachweisen. „Wir konnten zeigen, dass die Ladung an der Oberfläche für die Qualität der synthetisierten Proben von Bedeutung ist“, so Nagata. „Wir hoffen, dass unsere Forschung die Möglichkeit bietet, maßgeschneiderte Polymerbeschichtungen herzustellen, indem die Wasseroberflächen entsprechend angepasst werden.“
MPI-P / JOL