24.07.2024

Eine Sekunde Abweichung in 30 Millionen Jahren

Laseruhr des DLR erreicht Weltspitze an Genauigkeit.

Eine neue Laseruhr des Deutschen Zentrums für Luft- und Raumfahrt hat einen Spitzenwert an Genauigkeit für optische Uhren mit Gaszellen erzielt. In 30 Millionen Jahren würde sie nur eine Sekunde falsch gehen. Die Quanteneigenschaften von Jodmolekülen geben den Takt der Laseruhr vor. Weltraumtaugliche Laseruhren sollen künftig zu einer zentimetergenauen Satellitennavigation beitragen sowie einen globalen Zeitstandard liefern. Sie versprechen neue Wege für einen leistungsstärkeren Datentransfer in der weltweiten Kommunikation, der vernetzten Mobilität, beim autonomen Fahren bis hin zu Handel und Logistik. Aktuell entwickelt und baut das DLR im Projekt COMPASSO eine weltraumtaugliche Laseruhr. Ab 2027 wird diese auf der Internationalen Raumstation für den Einsatz optischer Uhren auf Satelliten erprobt.

Abb. Laseruhren sollen die Satellitennavigation präziser machen und ein global...
Abb. Hochpräzise Zeitsignale von Laseruhren auf Satelliten können künftig zu einer zentimetergenauen Positionsbestimmung sowie zu einer leistungsfähigeren weltweiten Datenübertragung beitragen.
Quelle: DLR; CC BY-NC-ND 3.0

Wie gut Satellitennavigation, Internet, Erdbeobachtung oder Finanzwesen funktionieren, hängt auch davon ab, wie exakt die notwendigen Zeitangaben bei der Datenübertragung sind. Satellitenuhren liefern Zeitsignale, mit denen sich beispielsweise Positionen auf der Erde bestimmen lassen oder Kommunikationsnetze synchronisiert werden. Weltraumtaugliche Laseruhren können künftig genauere Zeitinformationen liefern, um Satellitendienste für Kommunikation und Navigation effizienter und präziser zu machen. Laseroptische Uhren sind aufgrund ihrer höheren Taktfrequenz rund hundertmal genauer als aktuelle Satellitenuhren auf Mikrowellenbasis.

Mit seiner führenden Expertise für Quantentechnologien in der Raumfahrt hat das DLR im Projekt COMPASSO die hochpräzise Laseruhr entwickelt. „Sie weicht weniger als hundert Pikosekunden pro Tag von der Weltzeit ab. Diese Abweichung entspricht einer Sekunde auf 30 Millionen Jahre“, erklärt Claus Braxmaier vom DLR-Institut für Quantentechnologien in Ulm. „Wir schließen damit die Lücke zwischen der Genauigkeit von konventionellen Satellitenuhren und den großen, schweren High-End-Atomuhren, die in nationalen Metrologie-Instituten unsere Weltzeit festlegen.“

Den Takt der Laseruhr gibt die Quantenphysik vor. Dazu wird die Wellenlänge eines Lasers auf eine bestimmte Schwingung von Jodmolekülen in einer Gaszelle abgestimmt. Der Takt dieser Schwingung hängt nur von den quantenmechanischen Eigenschaften des Jods ab. Mit dieser geräteunabhängigen Referenz lässt sich die hohe Genauigkeit der optischen Uhr erreichen. Im Uhrenlabor des DLR-Instituts für Kommunikation und Navigation haben die Forscher die Laseruhr bis zur aktuellen Genauigkeit weiterentwickelt und mit einer anderen Präzisionsuhr verglichen, einem Wasserstoff-Maser.

„Durch Überlagern der Zeitsignale beider Uhren können wir wie mit einer Stoppuhr die einzelnen Takte der Laseruhr zählen. Diese folgen mit einer Frequenz von zehn Megahertz aufeinander, das sind zehn Millionen Takte pro Sekunde“, erläutert Braxmaier. „So konnten wir die sowohl die Ganggenauigkeit als auch die Präzision unserer Laseruhr bestimmen. Je präziser eine Uhr ist, desto gleichmäßiger ist ihr Takt. Die Ganggenauigkeit gibt an, wie weit ihr Takt nach einer bestimmten Zeit vom Sollwert abweicht.“

Ziel des COMPASSO-Projekts ist, optische Schlüsseltechnologien für die künftige Satellitennavigation zu entwickeln. „Unsere Vision ist, die hohe Genauigkeit von Laseruhren für eine global verfügbare Zeitangabe zu nutzen. Damit ließe sich ein weltweit einheitlicher, präziser Zeitstandard realisieren“, sagt Braxmaier. Am DLR-Institut für Quantentechnologien entsteht aktuell eine weltraumtaugliche Version der Laseruhr, die 2027 zur Internationalen Raumstation starten soll. Für den Einsatz im All muss die Uhr besonders leicht, kompakt, robust und gleichzeitig zuverlässig sein. Im realen Betrieb müssen Satellitenuhren mindestens 15 Jahre autonom und störungsfrei laufen.

„Wir wollen ein Flugmodell unserer Laseruhr auf der europäischen Bartolomeo-Plattform der ISS erproben. In diesem Außenlabor ist die Uhr typischen Weltraumbedingungen ausgesetzt. Sie muss im Vakuum sowohl bei direkter Sonneneinstrahlung sowie im Schatten der Erde im tiefkalten Weltraum ohne direkten Zugriff einwandfrei funktionieren“, erläutert Braxmaier. „Herausfordernd ist dabei, die Dampfzelle mit dem Jodgas konstant auf 20 Grad Celsius zu halten – egal, ob sie gerade in der Sonne oder im Schatten ist. Die gleichbleibende Temperatur ist wichtig für die hohe Genauigkeit der Uhr. Wir wollen damit zeigen, dass sich unsere Laseruhr für die nächsten Generationen des europäischen Satellitennavigationssystems Galileo eignet.“

Noch sind die Komponenten der Laseruhr auf einem Labortisch aufgebaut. Im nächsten Schritt muss das Forschungsteam die Uhr möglichst kompakt zusammenbauen, damit alles auf die Größe von zwei Schuhkartons passt. Das Lasersystem enthält besonders temperaturstabile und alterungsbeständige Materialien, wie Zerodurglas. Ein hochstabiler Leichtbau garantiert, dass die Uhr die beim Raketenstart auftretenden Vibrationen und Kräfte aushält. Im Weltraum darf sich nichts verziehen, damit die Wellenlänge des Lasers für ein präzises Zeitsignal konstant bleibt.

Die Uhrentechnologie mit Gaszellen als Taktgeber hat noch einen weiteren Vorteil: Sie lässt sich weiter verkleinern. Laseruhren von der Größe eines Smartphones mit einer solchen Genauigkeit eröffnen völlig neue Anwendungen und wirtschaftliche Perspektiven. Beispielsweise ließen sich mit Mini-Laseruhren ausgestattete Fahrzeuge im Straßenverkehr oder Lieferdrohnen in Städten mit einem gemeinsamen Navigationsmanagement vernetzen. Mit solchen Informationen über Verkehrsströme ließen sich Effizienz und Sicherheit erhöhen. In Kombination mit Beschleunigungssensoren wäre mit bordeigenen Laseruhren zudem ein schlechter oder unterbrochener Satellitenempfang leicht zu überbrücken. Die hohe Signalstabilität der Uhr schafft die Grundlage, auch unter schwierigen Navigationsbedingungen exakte Positionsdaten zu berechnen, etwa zwischen Häuserzeilen oder in Tunneln.

DLR / RK

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen