12.04.2021 • BiophysikMedizinphysikLaser

Einzelzellen im Fadenkreuz

Ultrakurze Laserpulse ermöglichen hochpräzise Form des Bio-Printings.

Mit ultrakurzen Laser­pulsen erzeugen Forscher der Hoch­schule München jetzt erstmals Explosionen, die einzelne lebende Zellen in die Höhe schleudern und gezielt auf einen Objekt­träger drucken. Mit dieser hoch­präzisen Form des Bio-Printings lasse sich künftig Gewebe aus körper­eigenen Zellen in bisher unerreichter Qualität herstellen, so die Wissen­schaftler.

Abb.: Mit einem Fluores­zenz-Mikro­skop werden ein­zelne lebende Zellen nach...
Abb.: Mit einem Fluores­zenz-Mikro­skop werden ein­zelne lebende Zellen nach geeig­neten Merk­malen für die Über­tragung durch den Femto­sekunden­laser aus­ge­wählt. (Bild: J. Weber, HS München)

Bislang ist der 3D-Druck lebender Zellen Hand­arbeit: Mit Hilfe eines Fluores­zenz-Mikro­skops sucht der Physiker Jun Zhang von der Hoch­schule München aus hunderten von Zellen, die sich in einer mit Flüssig­keit gefüllten Petri­schale befinden, ein vitales Exemplar aus. Auf dem Monitor positio­niert er diese Zelle genau unter dem Faden­kreuz und löst dann mit einem Maus­klick den Druck­vorgang aus. Der Lichtpuls eines Femto­sekunden­lasers erzeugt nur tausendstel Millimeter unter der Zelle eine winzige Plasma­blase, die kurz darauf explodiert und die Zelle mit nach oben reißt.

Zeitlupenaufnahmen zeigen, wie sie an der Spitze des Jets mit einer Geschwindig­keit von fünfzig Kilo­metern pro Stunde in die Höhe schießt. Zehn Sekunden braucht Zhang, um eine Zelle punkt­genau auf einen mit Gel beschichteten Objekt­träger zu trans­ferieren. Das Prinzip ist dasselbe wie beim 3D-Druck: Punkt für Punkt und Schicht für Schicht wird Material aufge­tragen. Nur dass hier nicht Bauteile aus Kunst­stoff oder Metall, sondern Sehnen-, Leber oder Herz­gewebe entstehen.

Neu ist die Präzision des Druck­prozesses. Keiner anderen Forscher­gruppe ist es bisher gelungen, einzelne Zellen mit einem Laser auf wenige Mikro­meter genau zu positio­nieren, ohne ihre biologische Funktions­fähig­keit zu beein­flussen. Die gängigen Inkjet-Bioprinter arbeiten mit Spritz­düsen, in denen die Zellen einer hohen Reibung ausge­setzt sind, die sie schädigt. Laser­drucker, die mit Nano­sekundenden­lasern arbeiten, benötigen eine metal­lische Absorber­schicht, die häufig zu Verun­reini­gungen führt, oder verwenden UV-Strahlung, die bei vielen Zellen das Erbgut schädigt.

Dem Team an der Hoch­schule München ist es gelungen, diese Probleme zu umgehen, indem zwei Techno­logien kombiniert wurden: Dank Fluores­zenz-Mikro­skopie lassen sich Zellen vor­selek­tieren – tote Zellen erscheinen rot, weil sie, im Gegen­satz zu lebenden Zellen, keine intakte Zell­membranen mehr besitzen, die ein Ein­dringen des Farb­stoffs verhindern. Und der Femto­sekunden­laser sorgt dafür, dass die Zellen beim Drucken keinen Schaden nehmen. Die ultra­kurzen Licht­pulse im infra­roten Spektral­bereich des Lichts beein­flussen weder die Organismen noch deren Erbgut. „Mit unserem Verfahren erreichen wir Über­lebens­raten der Zellen von 93 bis 99 Prozent“, berichtet Zhang.

Mehrere Jahre hat er an den Details getüftelt. „Die Heraus­forderung der Technologie­entwicklung lag darin, genau die richtigen Parameter zu finden“, so der Physiker. Es galt, die notwendige Laser-Energie sowie die Position und Größe der Blase zu ermitteln, die optimale Geschwindig­keit des Jets zu finden und den Abstand zum Objekt­träger, auf dem die Zelle landen soll. Das Ergebnis ist mehr als zufrieden­stellend. „Mit der neuen Technik können wir jetzt mit hoher Genauig­keit Gewebe beispiels­weise auf Zell­chips auf­drucken, mit denen Mediziner und Pharma­unter­nehmen Krank­heiten und Wirk­stoffe erforschen können“, erklärt Heinz Huber vom Laser-Zentrum der Hoch­schule München.

Das nächste Ziel ist die Auto­mati­sierung. Um Zell­chips für Anwender in Industrie und Forschung herstellen zu können, müssen Auswahl- und Druck­prozess erheblich schneller werden. Das Team will jetzt zusammen mit zwei Münchner Unter­nehmen eine computer­gesteuerte Anlage entwickeln, die bis zu hundert Millionen Zellen pro Sekunde identi­fi­zieren, trans­ferieren und zu zwei- oder drei­dimen­sionalen Strukturen zusammen­fügen kann.

Die Forschung geht derweil weiter. Zhang experi­mentiert gerade mit Sehnen­zellen. Werden diese in Abständen von weniger als hundert Tausendstel Milli­metern aufge­druckt, verbinden sie sich inner­halb weniger Stunden zu lang­gestreckten Strukturen, die typisch sind für Sehnen. Damit ist ein erster Schritt getan in Richtung „Tissue-Engineering“, der Herstellung von Gewebe­ersatz­material für Implantate aus körper­eigenen Zellen. Die Voraus­setzung dafür ist, dass nicht nur die Zellen selbst, sondern auch ihre Umgebung, die extra­zellulären Matrix, den natür­lichen Bedingungen im Körper entsprechen, erklärt Huber: „Mit unserer Technik lassen sich auch diese genau definierten Zell-Nachbar­schaften herstellen, um dann deren Einfluss auf das Gewebe genauer zu unter­suchen.“

HS München / RK

Weitere Infos

 

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen