Elementarteilchen im Paartanz
Forscher messen die Position von Elektronen und Protonen während einer chemischen Reaktion direkt mit ultrakurzen Röntgenblitzen.
Forscher messen die Position von Elektronen und Protonen während einer chemischen Reaktion direkt mit ultrakurzen Röntgenblitzen.
Eine chemische Reaktion erzeugt aus einem oder mehreren Ausgangsstoffen neue Substanzen. Auf der Ebene der beteiligten Moleküle ändert sich dabei die räumliche Anordnung von Elektronen und Atomkernen. Während man die Struktur der ursprünglichen und der erzeugten Moleküle häufig gut bestimmen kann, sind die Strukturen und molekularen Bewegungen während der Reaktion meist unbekannt. Ihre Kenntnis ist für ein genaues Verständnis der Reaktion aber unverzichtbar. Ein Traum ist deshalb das "Reaktionsmikroskop", mit dem sich Moleküle während einer Reaktion beobachten lassen. Forscher am Berliner Max-Born-Institut haben jetzt mit Hilfe von Röntgenimpulsen eine chemische Reaktion in bewegten Bildern auf atomaren Längen- und Zeit-Skalen, also im Bereich von 10-10 Metern und 10-13 Sekunden, dargestellt.
Abb. 1: Ein Blick in die Kristallstruktur von Ammoniumsulfat (gelb: Schwefel, rot: Sauerstoff, blau: Stickstoff und grau: Wasserstoff). Die Protonen entlang der gepunkteten Linie verlassen ihre Ammoniumionen und bilden jeweils mit einem Elektron aus dem Schwefelatom ein neues Wasserstoffstom, welches zwischen zwei räumlichen Positionen hin und her tanzt. Dieser Tanz findet in der auf der rechten Seite abgebildeten Ebene statt, welche im linken Teilbild in der gepunkteten Linie liegt und senkrecht auf der Papierebene steht. (Bild: MBI)
Den Wissenschaftlern beobachteten eine chemischen Reaktion in Ammoniumsulfat-Kristallen ((NH4)2SO4). Ausgehend von einem Kurzpuls-Lasersystem der neuesten Generation erzeugten sie einen 50 Femtosekunden langen blauen Lichtblitz, der die chemische Reaktion auslöste. Nur minimal zeitversetzt schickten sie einen synchronisierten 100 fs langen Röntgenblitz hinterher, mit dem sie mit hoher räumlicher Auflösung das Geschehen abbilden konnten. Der Röntgenimpuls wird dabei an einem Pulver aus kleinen Kristallen gebeugt (sog. Debye-Scherrer-Methode). Aus der Vielzahl gleichzeitig gemessener Beugungssignale konnten die Physiker die momentanen atomaren Abstände im Kristall und die dreidimensionale Verteilung der Elektronen innerhalb des Kristalls rekonstruieren. Durch die Aufnahme von Röntgen-Schnappschüssen zu verschiedenen Zeiten nach dem Auslösen der Reaktion entstand mit Hilfe des Stroboskop-Effekts also ein bewegter Film.
Völlig überraschend beobachteten die Berliner Physiker eine reversible chemische Reaktion, die sich grundsätzlich von den bekannten langsamen, d.h. thermischen Phasenübergängen des Ammoniumsulfats unterscheidet. Der blaue Lichtblitz führt dazu, dass zunächst das Ammonium-Ion (NH4)+ ein Proton, also eine positive Ladung, und das Sulfat-Ion (SO4)- ein Elektron, eine negative Ladung, abgeben. Die freigesetzten Elementarteilchen vereinigen sich dann zu einem Wasserstoff-Atom, welches schließlich zwischen zwei deutlich voneinander entfernten Positionen innerhalb des Kristalls hin und her springt. Diese Bewegung ist in dem beigefügten Film dargestellt. Die Kreise zeigen die ursprüngliche Position der Protonen an. Die roten Flecke zeigen die Bewegung der Wasserstoff-Atome im Anschluss an die chemische Reaktion.
Abb. 2: Eine Reihe von Schnappschüssen zu verschiedenen Zeiten. (Bild: MBI)
Die hier erstmals demonstrierte Röntgen-Pulverbeugung im Femtosekunden-Zeitbereich lässt sich auf viele weitere Systeme anwenden, etwa um die Eigenschaften molekularer Magnete aufzuklären oder die Elektronenbewegungen in (bio)molekularen Lichtempfängern zu verfolgen, die in Solarzellen eingesetzt werden.
Forschungsverbund Berlin e.V./AL