09.04.2024

Entropieproduktion auf der Nanoskala

Neues Modell zeigt, wie Entropie auf sehr kurzen Zeitskalen in laserangeregten Materialien erzeugt wird.

Entropie, die zentrale Größe der Thermodynamik, entsteht natürlicherweise ständig, kann aber nicht direkt gemessen werden. Ein von Physikern der Chalmers University of Technology im schwedischen Göteborg und der Heinrich-Heine-Universität Düsseldorf (HHU) entwickeltes Rechenmodell wirft nun ein neues Licht darauf, wie Entropie auf einer sehr kurzen Zeitskala in laserangeregten Materialien erzeugt wird. 


Abb.: Die Ionenverschiebung kann durch direkte Messung des Beugungsmusters...
Abb.: Die Ionenverschiebung kann durch direkte Messung des Beugungsmusters berechnet werden, etwa durch zeitaufgelöste Röntgenstreuexperimente. Indem diese Messung mit der Form des Terahertz-Laserpulses kombiniert wird, kann man die ultraschnelle Entropieproduktion des Mediums berechnen.
Quelle: U. Roma La sapienza / L. Caprini

Entropie ist ein Maß für Unumkehrbarkeit, sie spielt in der Thermodynamik eine zentrale Rolle. Im 19. Jahrhundert war sie Teil eines konzeptionellen physikalischen Durchbruchs; sie bildete den theoretischen Rahmen für den Wirkungsgrad von Wärmekraftmaschinen, die für die industrielle Revolution grundlegend waren. Solche technischen Fortschritte finden heute eher in Bereichen wie Nano- und Quantengeräten statt, doch die Entropie bleibt immer noch ein zentrales Konzept.

Matthias Geilhufe, Assistenzprofessor am Fachbereich Physik der Chalmers University of Technology: „Ein System möchte sich in der Regel in einen Zustand mit großer Unordnung – also mit maximaler Entropie – hin entwickeln. Ein Beispiel ist ein Zuckerwürfel, der sich in einem Glas Wasser auflöst.“ Während sich der Zucker löst, erhöht das System aus Wasser und Zucker seine Entropie. „Der umgekehrte Prozess – eine spontane Bildung eines Würfelzuckers im Wasser – wird nie beobachtet“, betont Geilhufe.

Die Entropie ist zwar inzwischen ein gängiges Konzept, aber sie kann nicht direkt gemessen werden. Geilhufe hat jedoch zusammen mit Lorenzo Caprini und Hartmut Löwen vom Institut für Theoretische Physik II der HHU ein Berechnungsmodell entwickelt, mit dem die Entropieproduktion in kristallinen Festkörpern, die mit Lasern angeregt werden, auf einer sehr kurzen Zeitskala gemessen werden kann. „Solche neuen Berechnungsmodelle geben uns neue Forschungsmöglichkeiten. Die Erweiterung der Thermodynamik für ultrakurze Anregungen, die wir erreichen konnten, wird neue Einblicke in die Funktionsweise von Materialien auf der Nanoskala ermöglichen“, sagt Löwen.

Die Forscher wandten ihre neue Methode auf kristalline Materialien an. Diese sind unverzichtbar für verschiedene Technologien, die Informationen über kurze Zeiträume übertragen und speichern, wie zum Bespiel bei Halbleitern in Computern oder magnetischen Speichermedien. Diese Materialien bestehen aus einem regelmäßigen kristallinen Gitter, in dem die Atome in sich wiederholenden Mustern angeordnet sind.

Laserlicht kann die Atome in eine kollektive Bewegung versetzen. Die Studienautoren fanden nun, dass die Phononen – die Gitterschwingungen in kristallinen Materialien – auf ähnliche Weise Entropie erzeugen können wie Bakterien im Wasser. Wie dies bei den Bakterien geschieht, zeigten Caprini und Löwen in früheren Forschungen und Modellrechnungen. Das Rechenmodell der Forscher lässt sich auch auf andere Arten von Materialanregungen anwenden und eröffnet damit eine neue Perspektive in der Forschung zu ultraschnellen Materialien. „Langfristig kann dieses Wissen für die Anpassung zukünftiger Technologien nützlich sein oder zu neuen wissenschaftlichen Erkenntnissen führen, wie zum Beispiel für sehr kleine Wärmepumpen“, sagt Caprini.

HHU / DE

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen