Exotischer Quantenzustand beobachtet
Repulsiv gebundene Magnonen in einer speziellen Spin-Ketten Verbindung.
Atome, Moleküle oder Festkörper, die durch Anziehungskräfte zwischen ihren Bestandteilen gebildet werden, sind in der Natur allgegenwärtig. Im Gegensatz zu diesen bekannten stabilen Verbundobjekten galten solche, die durch abstoßende Kräfte stabilisiert werden, aufgrund ihrer Instabilität in natürlich vorkommenden Systemen lange Zeit als theoretische Konstrukte. Insbesondere in Festkörperverbindungen hielt man die Beobachtung abstoßend gebundener Teilchen für unmöglich. Kürzlich ist es einem internationalen Forscherteam um Zhe Wang von der TU Dortmund gelungen, repulsiv gebundene Magnonen – ein exotischer Quanten-Vielteilchen-Zustand – experimentell zu beobachten.
Die Beobachtung erfolgte in der speziellen Spin-Ketten Verbindung BaCo2V2O8; als Spins bezeichnet man einen intrinsischen magnetischen Freiheitsgrad der Elektronen in einem Atom. In BaCo2V2O8 nutzte das Team Terahertz-Lichtwellen, um die Spins anzuregen und ihre Dynamik in starken äußeren Magnetfeldern mit bis zu sechzigTesla zu untersuchen. Dabei identifizierten die Forscher einerseits die bereits bekannten Magnonen, also niederenergetische magnetische elementare Quasiteilchen-Anregungen. Andererseits entdecken sie aber auch die besonderen repulsiv gebundenen Zwei-Magnon- und Drei-Magnon-Zustände als hochenergetische zusammengesetzte Anregungen.
Die Verbindung BaCo2V2O8 ist eine Festkörper-Realisierung des Heisenberg-Ising-Modells, das seit über hundert Jahren für das Verständnis vieler physikalischer Phänomene von Bedeutung ist. Das Modell hat bereits verschiedene Zweige der Physik beeinflusst – von der kondensierten Materie über kalte Atome bis hin zur Quanteninformation. „Die Beobachtung der repulsiv gebundenen Magnonen war für uns überraschend“, sagt Zhe Wang. „Unsere Studie liefert ein erstes Verständnis dieser komplexen Quanten-Vielteilchen-Zustände in einem repräsentativen Festkörpersystem. Wie sich diese exotischen Zustände in anderen, noch komplexeren Quantensystemen manifestieren und auch ihre möglichen Anwendungen in der Quanteninformation sind sehr spannende und herausfordernde Aufgaben für künftige Forschungen.“
TU Dortmund / JOL