Exotisches Wechselspiel der Elektronen
Neuer Quantenzustand könnte für hochempfindliche Quantensensoren geeignet sein.
In Quantenmaterialien wechselwirken Elektronen ungewöhnlich stark miteinander sowie mit den Atomen des Kristallgitters. Als Konsequenz dieses innigen Miteinanders zeigen sich starke Quanteneffekte, die nicht nur im mikroskopischen, sondern auch im makroskopischen Maßstab wirken. Infolgedessen bieten Quantenmaterialien bemerkenswerte Eigenschaften. Beispielsweise können sie Strom bei tiefen Temperaturen völlig verlustfrei leiten. Oft reichen dabei schon kleine Änderungen von Temperatur, Druck oder elektrischen Spannungen, um das Verhalten des Materials drastisch zu ändern. Im Grunde lassen sich auch Magneten als Quantenmaterialien ansehen: Letztlich beruht der Magnetismus auf dem Spin. „In gewisser Hinsicht können sich diese Spins wie eine Flüssigkeit benehmen“, erklärt Jochen Wosnitza vom Hochfeld-Magnetlabor Dresden HLD am Helmholtz-Zentrum Dresden-Rossendorf. „Bei sinkenden Temperaturen können diese ungeordneten Spins dann gefrieren, ähnlich wie Wasser zu Eis gefriert.“
Das internationale Team wollte einen Quantenzustand erzeugen, bei dem die Atomausrichtung, die mit den Spins gekoppelt ist, selbst bei ultrakalten Temperaturen nicht ordnet – ähnlich wie eine Flüssigkeit, die sich selbst bei Extremkälte nicht verfestigen mag. Um diesen Zustand zu erreichen, setzte die Arbeitsgruppe auf ein besonderes Material – eine Verbindung aus den Elementen Praseodym, Zirkonium und Sauerstoff. Die Vermutung: In diesem Material sollte das Kristallgitter so beschaffen sein, dass die Elektronenspins auf besondere Weise mit ihren Orbitalen wechselwirken können. „Die Voraussetzung war allerdings, dass die Kristalle eine extreme Reinheit und Güte besitzen“, sagt Satoru Nakatsuji von der Universität Tokio.
Dafür brauchte es diverse Anläufe, doch schließlich konnte das Team ausreichend reine Kristalle herstellen, um sie für sein Experiment zu nutzen: In einem Kryostaten kühlten die Fachleute ihre Probe nach und nach bis auf zwanzig Millikelvin ab. Um zu sehen, wie die Probe auf diese Abkühlung und im Magnetfeld reagiert, maßen sie zum einen, wie sich ihre Länge änderte. Zum anderen erfasste die Gruppe, wie der Kristall auf Ultraschallwellen reagierte, die sie gezielt durch ihn hindurchschickten. Das Resultat: „Wären die Spins geordnet, hätte dies eine sprunghafte Änderung im Verhalten des Kristalls bewirken müssen, etwa eine plötzliche Längenänderung“, beschreibt Sergei Zherlitsyn, Experte für Ultraschall-Experimente am HLD. „Doch wir haben gesehen: Da passiert nichts! Weder bei der Länge noch bei der Reaktion auf die Ultraschallwellen konnten wir irgendwelche plötzlichen Änderungen beobachten.“
Die Schlussfolgerung: Das ausgeprägte Wechselspiel von Spins und Orbitalen hat ein Ordnen verhindert, weshalb die Atome in ihrem flüssigen Quantenzustand geblieben sind – ein erstmals beobachteter Quantenzustand. Weitere Untersuchungen im Magnetfeld haben diese Vermutung bestätigt. Das Grundlagenergebnis könnte eines Tages auch praktische Auswirkungen haben: „Womöglich lässt sich der neue Quantenzustand irgendwann nutzen, um hochempfindliche Quantensensoren zu entwickeln“, spekuliert Jochen Wosnitza. „Dazu müssten wir allerdings noch herausfinden, wie sich gezielt Anregungen in diesem Zustand erzeugen lassen.“ Die Quantensensorik gilt als vielversprechende Zukunftstechnologie. Da sie wegen ihrer Quantennatur überaus empfindlich auf äußere Reize reagieren, können Quantensensoren zum Beispiel Magnetfelder oder Temperaturen ungleich genauer registrieren als konventionelle Messfühler.
HZDR / JOL