29.08.2014

Fabelhafte Fehlstellen

Silizium statt Stickstoff in Diamant lässt identische Photonen emittieren.

Identische Photonen könnten den Weg zum leistungsfähigen Quantencomputer und zu einer sicheren Informationsübertragung ebnen. Bisher war die Herstellung von Photonen, die sich nicht unterscheiden, jedoch nur unter schwierigsten Bedingungen möglich. Jetzt haben Ulmer Wissenschaftler um Fedor Jelezko und Lachlan Rogers Silizium-Fehlstellenzentren in künstlich hergestellten Diamanten für die Produktion identischer Photonen genutzt. Diese besonderen Diamanten waren Ergebnis eines „Unfalls“ bei dem Kristallzüchter der Forscher.

Abb.: Lachlan Rogers (rechts) und Kay Daniel Jahnke im Labor mit einem Kryostat (Bild: Rogers / U. Ulm)

Fedor Jelezko, Leiter des Ulmer Instituts für Quantenoptik, gilt als ausgewiesener Experte für die Manipulation kleinster Teilchen in Festkörpern. Dabei liegt sein Schwerpunkt auf extrem reinen, künstlich hergestellten Diamanten. In ihren Kristallgittern, insbesondere mit dem Stickstoff-Fehlstellen-Zentrum, lassen sich Fremdatome kontrollieren und quantenmechanische Informationen über sie speichern. Diese Fehlstellen senden wiederum Lichtteilchen mit charakteristischen Eigenschaften aus.

Nun haben die Forscher testweise Kristalle mit Silizium-Fehlstellenzentren benutzt, die als Mängelexemplare galten: Das Plasma, aus dem die künstlichen Diamanten gezüchtet werden, war kurzzeitig zu groß geworden und hat das Glasfenster aus Siliziumoxid angelöst. So sind Silizium-Atome in das Plasma gelangt und wurden im Laufe des Diamantenwachstums als Silizium-Fehlstellen eingebaut. „Tatsächlich erwiesen sich Silizium-Fehlstellenzentren als zuverlässige Emitter von einzelnen Photonen, die nicht unterscheidbar sind“, erklärt Lachlan Rogers, Wissenschaftler am Institut für Quantenoptik der Universität Ulm. Bisher habe man solche identischen Lichtteilchen in Gasen hergestellt, wobei frei bewegliche Atome sich kaum kontrollieren lassen. Lösung dieses Problems sei ihre Speicherung in Kristallgittern der Diamanten.

Abb.: Zwei Silizium-Fehlstellenzentren im Kristallgitter eines Diamanten, die identische Photonen produzieren. (Bild: Rogers / U. Ulm)

Lichtteilchen, die sich in Farbe und Form entsprechen, sind für mehrere Zukunftstechnologien hilfreich. Die Leistungsfähigkeit eines Quantencomputers, der zahlreiche Berechnungen gleichzeitig durchführen kann, beruht auf der quantenmechanischen Verschaltung so genannter Qubits. Solche hochempfindlichen Verschränkungen können mithilfe von „Photonendoppelgängern“ wesentlich einfacher hergestellt werden. Verschränkungen sind zudem eine wichtige Grundlage für die sichere Informationsübertragung per Quantenkryptographie.

Weiterhin könnten Lichtteilchen, die sich zuverlässig entsprechen, bildgebende Verfahren verbessern. „Die größte Herausforderung ist jedoch die Kühlung der Diamanten auf bis zu minus 270 Grad Celsius“, sagt der Mitautor Kay Daniel Jahnke. In einem nächsten Schritt gelte es außerdem, den so genannten Spin der Silizium-Fehlstellenzentren unter Kontrolle zu bringen. „Insgesamt ist es uns erstmals gelungen, identische Photonen aus Silizium-Fehlstellenzentren zu produzieren, deren Ursprung nicht nachvollzogen werden kann“, resümiert Jelezko. Damit sei die Voraussetzung für Verschränkung erfüllt.

U. Ulm / DE

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen