Gedruckter Plastiktransistor
Ein neuer organischer Halbleiter mit Elektronenleitung bringt die Plastikelektronik voran
Ein neuer organischer Halbleiter mit Elektronenleitung bringt die Plastikelektronik voran.
Organische Moleküle oder Polymere mit Halbleitereigenschaften sind die Grundlage der Plastikelektronik, die bei bestimmten Anwendungen der herkömmlichen Siliziumelektronik Konkurrenz macht. Im Gegensatz zu Silizium lassen sich aus organischen Halbleitern biegsame Schichten herstellen. Die damit mögliche flexible Elektronik ist zudem preiswert, da sie keine Reinraumtechnologie benötigt sondern kurzerhand auf eine Unterlage aufgedruckt werden kann. Bisher wurden nur p-halbleitende Polymere eingesetzt, bei denen positiv geladene Löcher die elektrische Leitung übernehmen. Doch jetzt hat man ein vielversprechendes n-halbleitendes Polymer mit Elektronenleitung gefunden, das der Plastikelektronik neue Möglichkeiten eröffnet.
Der organische n-Halbleiter, den Antonio Facchetti und seine Kollegen von der Polyera Corporation in den USA in Zusammenarbeit mit Forschern der BASF entwickelt haben, ist ein Polymer aus NDI-Bithiophene (wobei NDI für Naphthalencarboxydiimid steht). Im Aufbau dieses Polymers wechseln sich das elektronenreiche Bithiophen als Donor und das elektronenarme NDI als Akzeptor ab. Das hat hervorragende elektrische Eigenschaften zur Folge, die mit denen der besten polymeren p-Halbleiter konkurrieren können. Zudem wird das neue Polymer nicht von der Atmosphäre angegriffen. Es löst sich jedoch gut in den üblichen organischen Lösungsmitteln und lässt sich deshalb z. B. auf eine Unterlage aufsprühen oder aufdrucken. Dank dieser Kombination aus guten Eigenschaften ist das neue Polymer den bisher bekannten organischen n-Halbleitern weit überlegen.
Facchetti und seine Mitarbeiter haben den praktischen Nutzen des neuen organischen n-Halbleiters sogleich eindrucksvoll demonstriert. Dazu haben sie aus ihm und dem organischen p-Halbleiter Polyhexylthiophen einem komplementären Schaltkreis gedruckt, der aus zwei verschiedenen Dünnschichttransistoren bestand. In diesen Transistoren floss ein Strom durch eine dünne Schicht des n- bzw. p-Halbleiters von der Source- zur Drain-Elektrode. Der Stromfluss wurde jeweils mit einer Gate-Elektrode gesteuert, die über der jeweiligen Halbleiterschicht lag und von dieser durch ein Dielektrikum elektrisch isoliert war. Diese komplementäre Schaltung arbeitete hervorragend als logischer Inverter, der schwache Eingangsspannungen verstärkte und starke abschwächte.
Der jetzt vorgestellte organische n-Halbleiter ermöglicht für sich allein genommen und im Zusammenspiel mit den bekannten p-Halbleitern neue Schaltungen, die flexibel und preiswert sind. Sie lassen sich z. B. für „intelligente“ Etiketten oder biegsame Bildschirme nutzen.
RAINER SCHARF
Weitere Infos:
- Originalveröffentlichung:
He Yan et al.: A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679 (2009)
http://dx.doi.org/10.1038/nature07727 - Homepage von Antonio Facchetti an der Northwestern University in Illinois:
http://chemgroups.northwestern.edu/marks/ WebPage-1.html
http://polyera.com/
Weitere Literatur:
- Henning Sirringhaus: Electrons in the fast lane. Nature 457, 667 (2009)
http://dx.doi.org/10.1038/457667a
AL