Genug Strom für Nano-Satelliten
Genaue Planung des Energieverbrauchs verhindert eine Überlastung der Batterien.
Nano-Satelliten sind ungefähr so groß wie ein Schuhkarton, hochtechnisiert und bald zu Zehntausenden in der Erdumlaufbahn unterwegs. Diese können zum Beispiel hochauflösende Fotos unseres Planeten schießen oder Telekommunikations-Netzwerke verstärken. Das kostet jedoch Energie und diese Ressource ist bei den kompakten Hightech-Geräten knapp. Informatiker der Universität des Saarlandes zeigen, wie der Energieverbrauch von Satelliten so geplant werden kann, dass sie stets optimal arbeiten, ohne ihre Batterien jemals zu überlasten. Die Ergebnisse sind auch auf andere Anwendungen übertragbar.
„Kern unserer aktuellen Arbeit ist ein Scheduler, also ein Ablauf-Planer“, erklärt Holger Hermanns, Informatik-Professor der Universität des Saarlandes. Damit lassen sich die zahlreichen unterschiedlichen Aktivitäten, die moderne Nano-Satelliten durchführen können, kontinuierlich vorausplanen und mit Blick auf den Energieverbrauch optimieren. Außergewöhnlich ist dabei das Batterie-Modell, das dem Planungsverfahren der Forscher zugrunde liegt: „Wir beziehen uns nicht auf das gewöhnliche, lineare Modell, gemäß dessen die Batterieladung einfach als Wert zwischen hundert und null Prozent dargestellt wird“, so der Informatiker Hermanns. „Unser Ablauf-Planer stützt sich auf das kinetische Batterie-Modell, mit dem auch Ladungsschwankungen, die jeder Batterie zu eigen sind, präzise einberechnet werden können.“
Das neue Verfahren zur Steuerung von Satelliten lässt so auch langfristige Aktivitätsplanungen zu und skaliert reibungslos auf ganze Satelliten-Flotten. Ihr neues Planungsverfahren haben die Forscher anhand zweier Satelliten des Typs GOMX-4 der dänisch-luxemburgischen Firma GOMspace entwickelt. Jedes Mal, wenn die Satelliten die Bodenstation in Dänemark überfliegen, senden diese die Telemetrie-Daten ihrer Batterienutzung hinunter. Auf Grundlage dieser Daten wird dort mithilfe des Planungsmodells ein neuer Aktionsplan errechnet und dann auf die Satelliten hochgeladen. „Indem wir den Plan bei jedem Überflug über die Bodenstation erneuern, stellen wir sicher, dass stets die bestmögliche Batterienutzung gewährleistet wird“, erklärt Hermanns.
Diese Ergebnisse könnten auf großes Interesse stoßen. Denn der Markt für LEO (low-earth orbit) Satelliten wächst rasant: Heutzutage kreisen etwa 2500 aktive Kleinst-Satelliten in erdnaher Umlaufbahn um unseren Planeten, aber für die kommenden zehn Jahren sind bereits Starts für rund 50.000 weitere angekündigt. Das neuartige Planungsmodell für Batterienutzung geht jedoch darüber hinaus und kann auch auf andere Anwendungsbereiche übertragen werden, beispielsweise E-Mobilität, Drohnen oder Smart-Home-Geräte.
U. Saarland / JOL
Weitere Infos
- Originalveröffentlichung
G. Stock et al.: Managing Fleets of LEO Satellites: Nonlinear, Optimal, Efficient, Scalable, Usable, and Robust, IEEE Trans. Comp. Aid. Des. Int. Circ. Sys. 39, 3762 (2020) DOI: 10.1109/TCAD.2020.3012751 - Dependable Systems and Software (H. Herrmanns), Universität des Saarlandes, Saarbrücken