18.10.2022 • Energie

Grüner Wasserstoff: Röntgenquellen treiben die Entwicklung von Elektrokatalysatoren voran

Röntgenabsorptions-Spektroskopie hilft bei der Bestimmung aktiver Zustände von katalytisch aktiven Materialien.

Mit der Elektrokatalyse von Wasser lässt sich elektrische Energie aus Sonne oder Wind zur Erzeugung von grünem Wasserstoff nutzen und so speichern. Moderne Röntgen­quellen wie BESSY II können dabei die Entwicklung von passenden Elektro­kataly­satoren voran­treiben. Insbesondere lassen sich mit Hilfe von Röntgen­absorptions-Spektroskopie die aktiven Zustände von katalytisch aktiven Materialien für die Sauerstoff­entwick­lungs­reaktion bestimmen. Das ist ein wichtiger Beitrag, um effiziente Katalysatoren aus günstigen und weit verbreiteten Elementen zu entwickeln.

Abb.: Mangan­oxide kommen in ver­schie­denen struk­tu­rellen Vari­anten...
Abb.: Mangan­oxide kommen in ver­schie­denen struk­tu­rellen Vari­anten vor. Das macht sie zu einer span­nen­den Mate­rial­klasse für Elek­tro­kata­ly­sa­toren. (Bild: M. Risch, HZB)

Damit die Aufspaltung von Wasser­molekülen leichter und mit weniger Energie­einsatz gelingt, sind die Elektroden mit katalytisch aktiven Materialien beschichtet. Marcel Risch untersucht mit seinem Team am Helmholtz-Zentrum Berlin für Materialien und Energie die Sauerstoff­entwicklung bei der Elektro­katalyse von Wasser. Denn vor allem die Sauerstoff­entwicklung muss für eine wirt­schaft­liche Wasserstoff­produktion noch effizienter ablaufen.

Eine spannende Materialklasse für Elektro­kataly­satoren sind Manganoxide, die in vielen verschiedenen struktu­rellen Varianten vorkommen. „Ein ent­schei­dendes Kriterium für die Eignung als Elektro­katalysator ist die Oxida­tions­zahl des Materials und wie sie sich im Lauf der Reaktion verändert“, erläutert Risch. Bei den Mangan­oxiden gibt es auch hierbei eine große Vielfalt.

Informationen über die Oxidations­zustände bringt die Röntgen­absorptions-Spektroskopie, kurz XAS: Röntgen­quanten mit passender Energie regen dabei Elektronen auf den innersten Schalen an, die diese Quanten absorbieren. Je nach Oxidations­zahl kann man diese Absorption bei unter­schied­lichen Anregungs­energien beobachten. Das Team um Risch hat eine Elektrolyse-Zelle konstruiert, die XAS-Messungen während der Elektrolyse ermöglicht.

„Mit der Röntgen­absorptions-Spektroskopie können wir nicht nur die Oxidations­zahlen ermitteln, sondern auch Korrosions­prozesse oder Phasen­ver­ände­rungen im Material beobachten“, sagt Risch. Kombiniert mit elektro­chemischen Messungen ergibt sich aus den Messdaten damit ein deutlich besseres Verständnis des Materials während der Elektro­katalyse. Die benötigte hohe Intensität der Röntgen­strahlung steht allerdings nur an modernen Synchrotron-Lichtquellen zur Verfügung. In Berlin betreibt das HZB dafür BESSY II. Weltweit gibt es etwa fünfzig solcher Lichtquellen für die Forschung.

Risch sieht noch großes Potenzial für die Anwendung von Röntgen­absorptions-Spektroskopie, insbesondere was die Zeitskalen der Beobachtung betrifft. Denn typische Messzeiten betragen einige Minuten pro Messung. Elektro­katalytische Reaktionen finden jedoch auf kürzeren Zeitskalen statt. „Wenn wir bei der Elektro­­katalyse zuschauen könnten, während sie passiert, könnten wir wichtige Details besser verstehen “, so Risch.

Mit diesem Wissen würden sich preiswerte und umwelt­freundliche Kataly­satoren rascher entwickeln lassen. Andererseits finden viele Alterungs­prozesse binnen Wochen oder Monaten statt. „Wir könnten zum Beispiel in regel­mäßigen Abständen die gleiche Probe immer wieder untersuchen, um diese Prozesse zu verstehen“, sagt Risch. Damit ließen sich zusätzlich noch lang­lebigere Elektro­­kataly­­satoren entwickeln.

HZB / RK

Weitere Infos

 

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen