Hat Trappist-1b eine Atmosphäre?
Beschaffenheit des Gesteinsplaneten bleibt rätselhaft.
Messungen mit dem Weltraumteleskop James Webb nähren Zweifel an der derzeitigen Vorstellung zur Beschaffenheit des Exoplaneten Trappist-1b. Bisher galt er als dunkler Gesteinsplanet ohne Atmosphäre, der von einem Milliardenjahre andauernden kosmischen Einfluss aus Strahlung und Einschlägen gezeichnet ist. Doch die Oberfläche zeigt keine Hinweise auf eine Verwitterung, was auf geologische Aktivitäten hindeutet. Alternativ würde auch ein Planet mit einer dunstigen Atmosphäre aus Kohlendioxid infrage kommen. Die Ergebnisse verdeutlichen die Herausforderungen bei der Bestimmung der Eigenschaften von Exoplaneten mit dünner Atmosphäre.
Trappist-1b ist einer von sieben Gesteinsplaneten, die den vierzig Lichtjahre entfernten Stern Trappist-1 umkreisen. Das Planetensystem ist einzigartig, weil es den Astronomen erlaubt, gleich sieben erdähnliche Planeten aus relativer Nähe zu untersuchen, wobei sich drei von ihnen in der habitablen Zone befinden. Die aktuelle Studie nutzt Messungen der thermischen Infrarotstrahlung des Planeten Trappist-1 b mit dem Mid-Infrared Imager am JWST. Dabei schließt sie die Ergebnisse aus dem Vorjahr mit ein, auf die die bisherigen Schlussfolgerungen beruhen und Trappist-1 b als einen dunklen Gesteinsplaneten ohne Atmosphäre beschreiben.
„Die Vorstellung eines Gesteinsplaneten mit einer stark verwitterten Oberfläche ohne Atmosphäre ist jedoch mit der aktuellen Messung nicht vereinbar“, sagt Jeroen Bouwman vom MPI für Astronomie. „Deswegen denken wir, dass der Planet mit relativ unverändertem Material bedeckt ist.“ Gewöhnlich wird die Oberfläche von der Strahlung des Zentralsterns und Einschlägen von Meteoriten verwittert. Die Ergebnisse sprechen aber dafür, dass das Gestein an der Oberfläche höchstens etwa tausend Jahre alt ist, deutlich weniger als das Planetensystem, dessen Alter auf einige Milliarden Jahre geschätzt wird.
Das könnte darauf hindeuten, dass die Planetenkruste dramatischen Veränderungen unterworfen ist, die womöglich durch einen extremen Vulkanismus oder Plattentektonik zu erklären wären. Auch wenn solch ein Szenario eine hypothetische Betrachtung darstellt, ist es doch plausibel. Der Planet ist groß genug, dass das Innere noch Restwärme aus seiner Entstehung erhalten haben dürfte – wie bei der Erde. Die Gezeitenwirkung des Zentralsterns und der übrigen Planeten dürfte Trappist-1b zudem so verformen, dass die entstehende innere Reibung Wärme erzeugt – ähnlich, wie wir es beim Jupitermond Io sehen. Zusätzlich wäre induktives Heizen durch das Magnetfeld des nahen Sterns denkbar.
„Die Daten lassen ebenfalls eine gänzlich andere Lösung zu“, betont allerdings Thomas Henning vom MPIA, einer der Hauptverantwortlichen für den Bau des MIRI-Instruments. „Im Gegensatz zur bisherigen Vorstellung gibt es Bedingungen, unter denen der Planet eine dicke Atmosphäre reich an Kohlendioxid besitzen könnte.“ Eine wesentliche Rolle bei diesem Szenario spielt Dunst aus Kohlenwasserstoffverbindungen, also Smog, in der Hochatmosphäre.
Die beiden Beobachtungsprogramme, die sich in der aktuellen Studie ergänzen, sollten die Helligkeit von Trappist-1b bei verschiedenen Wellenlängen im thermischen Infrarotbereich ermitteln. Die erste Beobachtung war empfindlich für die Absorption der Infrarotstrahlung des Planeten durch eine Schicht aus CO2. Eine verminderte Helligkeit wurde jedoch nicht gemessen, weswegen die Forscher daraus schlossen, dass der Planet keine Atmosphäre besitzt.
Das Forschungsteam hat Modellrechnungen durchgeführt, die zeigen, dass Dunst die Temperaturschichtung einer CO2-reichen Atmosphäre umkehren kann. Normalerweise sind die tieferen, bodennahen Schichten wegen des höheren Drucks wärmer als die oberen. Weil der Dunst das Sternlicht absorbiert und sich erwärmt, würde er stattdessen – unterstützt durch einen Treibhauseffekt – die oberen Schichten der Atmosphäre heizen. Dadurch absorbiert das Kohlendioxid dort nicht die Wärmestrahlung aus den unteren Schichten, sondern gibt selbst Infrarotstrahlung ab.
Auch wenn die Daten zu diesem Szenario passen, schätzen die Astronomen es dennoch im Vergleich als weniger wahrscheinlich ein. Einerseits ist es schwieriger, wenn auch nicht unmöglich, aus einer CO2-reichen Atmosphäre Kohlenwasserstoffverbindungen zu erzeugen, die einen Dunst bilden. Zudem bleibt das Problem, dass die aktiven roten Zwergsterne, zu denen Trappist-1 zählt, Strahlung und Winde produzieren, die über mehrere Milliarden Jahre hinweg die Atmosphären von nahen Planeten leicht abtragen können.
Trappist-1b ist ein anschauliches Beispiel dafür, wie schwierig der Nachweis und die Bestimmung der Atmosphären von Gesteinsplaneten derzeit noch ist – selbst für das JWST. Im Vergleich zu Gasplaneten sind sie dünn und erzeugen deswegen nur schwache messbare Signaturen. Die beiden Beobachtungen zur Untersuchung von Trappist-1b, die Helligkeitswerte bei zwei Wellenlängen lieferten, dauerten insgesamt fast 48 Stunden, was nicht ausreichte, um zweifelsfrei zu entscheiden, ob der Planet eine Atmosphäre hat.
Die Beobachtungen nutzten die geringe Neigung der Planetenebene gegenüber unserer Sichtlinie zu Trappist-1 aus. Dadurch laufen die sieben Planeten bei jedem Umlauf vor dem Stern vorbei und verdunkeln ihn leicht. Daraus ergeben sich mehrere Möglichkeiten, etwas über die Beschaffenheit der Planeten und ihrer Atmosphären zu erfahren.
Gut etabliert hat sich die Transitspektroskopie. Hierbei wird die Verdunklung eines Sterns durch seine Planeten abhängig von der Wellenlänge gemessen. Neben der Bedeckung durch den undurchsichtigen Planetenkörper, aus der Astronomen den Durchmesser des Planeten ermitteln, absorbieren die Gase in den Atmosphären bei bestimmten Wellenlängen das Licht des Sterns. Daraus schließen sie, ob ein Planet eine Atmosphäre hat und woraus sie besteht. Leider hat diese Methode insbesondere bei Planetensystemen wie Trappist-1 Nachteile. Kühle, rote Zwergsterne weisen oft große Sternflecken und starke Eruptionen auf, die die Messung entscheidend beeinträchtigen.
Die Astronomen umgehen dieses Problem weitgehend, wenn sie stattdessen die vom Stern aufgeheizte Seite eines Exoplaneten im thermischen Infrarotlicht beobachten, so wie in der aktuellen Studie mit Trappist-1b. Die helle Tagseite ist besonders gut zu sehen, kurz bevor und nachdem der Planet auf seiner Bahn vom Stern verdeckt wird. Die vom Planeten ausgesandte Infrarotstrahlung enthält Informationen über seine Oberfläche und Atmosphäre. Solche Beobachtungen sind gegenüber der Transitspektroskopie allerdings zeitintensiver.
Angesichts des Potenzials dieser Art von Messungen, bei denen ein Planet vom Stern verdeckt wird, hat die NASA kürzlich ein ausgedehntes Beobachtungsprogramm genehmigt, um die Atmosphären von Gesteinsplaneten um nahegelegene, massearme Sterne zu untersuchen. Dieses außergewöhnliche Programm, genannt „Rocky Worlds“, beinhaltet unter anderem fünfhundert Stunden Beobachtungszeit mit dem JWST.
Das Forschungsteam erwartet, dass die endgültige Gewissheit durch eine weitere Beobachtungsvariante erlangt werden kann. Dabei wird der komplette Umlauf des Planeten um den Stern erfasst, so dass alle Beleuchtungsphasen von der dunklen Nachtseite beim Vorbeizug vor dem Stern bis hin zur hellen Tagseite kurz vor und nach der Bedeckung durch den Stern einbezogen werden. Daraus lässt sich eine Phasenkurve erstellen, die die Helligkeitsänderung des Planeten entlang seiner Bahn angibt. Dadurch können die Astronomen die Temperaturverteilung auf dem Planeten ableiten.
Diese Messung hat das Team mit Trappist-1b bereits durchgeführt. Durch die Auswertung, wie sich die Wärme auf dem Planeten verteilt, können sie auf das Vorhandensein einer Atmosphäre schließen. Sie hilft nämlich dabei, die Wärme von der Tag- auf die Nachtseite zu transportieren. Sollte sich die Temperatur abrupt am Übergang der beiden Seiten ändern, spricht das für das Fehlen einer Atmosphäre.
MPIA / RK