26.07.2006

Heiße Polkappen - Fehlanzeige!

Max-Planck-Forscher gewinnen neue Einblicke in Prozesse, mit denen alte Pulsare ihre Röntgenstrahlung erzeugen.



Max-Planck-Forscher gewinnen neue Einblicke in Prozesse, mit denen alte Pulsare ihre Röntgenstrahlung erzeugen

Pulsare gleichen Leuchttürmen, die über komplexe Prozesse elektromagnetische Strahlung erzeugen. Wie aber funktionieren diese kosmischen Kraftwerke? Darüber rätseln die Astronomen seit der Entdeckung dieser Objekte vor fast 40 Jahren. Dank der hohen Empfindlichkeit des europäischen Röntgenobservatoriums XMM-Newton haben Forscher der Max-Planck-Institute für extraterrestrische Physik und für Radioastronomie jetzt eine Teilantwort gefunden: Danach stammt die Energie für die Entstehung der bei jüngeren Pulsaren häufig beobachteten Millionen Grad heißen Polkappen überwiegend aus dem Innern der Sterne und nicht von außen, wie bisher allgemein angenommen. Den Schlüssel zu dieser Erkenntnis lieferte die Beobachtung von fünf, mehrere Millionen Jahre alten Pulsaren.

Neutronensterne entstehen mit Temperaturen von Billionen Grad während des Gravitationskollapses massereicher Sterne, die ihren nuklearen Brennstoffvorrat verbraucht haben und unter ihrer eigenen Last in sich zusammenstürzen. Nach dieser spektakulären Geburt kühlen die heißen Sternleichen stetig ab. Das geschieht während der ersten 100000 Jahre im Wesentlichen durch die Emission von Neutrinos, die den Neutronenstern ungehindert verlassen und dabei Energie mitnehmen. Später überwiegt die Abkühlung durch Abstrahlung thermischer Photonen von der heißen Sternoberfläche.

Beobachtungen mit früheren Röntgensatelliten haben gezeigt, dass die Röntgenstrahlung der Neutronensterne aus drei verschiedenen Gebieten stammt: Zum einen glüht die gesamte, Millionen Grad heiße Oberfläche; zweitens strahlen elektrisch geladene Teilchen bei ihrer Bewegung entlang gekrümmter Magnetfeldlinien beim Verlassen der Magnetosphäre sehr intensiv; zum Dritten emittieren junge Pulsare häufig Röntgenstrahlung, die ihren Millionen Grad heißen Polkappen entspringt.

Bisher haben die Astronomen angenommen, dass diese heißen Flecken ausschließlich durch ein Bombardement hochenergetischer, geladener Teilchen entstehen, die aus der Magnetosphäre zur Oberfläche zurückfliegen und die Polkappenbereiche aufheizen. Beobachtungen mit XMM-Newton lassen an diesem Bild jedoch Zweifel aufkommen. So erlaubte der Satellit erstmals detaillierte Untersuchungen an bisher fünf, jeweils mehrere Millionen Jahre alten Pulsaren. "Kein anderes im Orbit befindliches Röntgenobservatorium besitzt zurzeit die dafür notwendige Empfindlichkeit", sagt Werner Becker, Mitarbeiter am Max-Planck-Institut für extraterrestrische Physik in Garching und Privatdozent an der Universität München.

Becker und seine Kollegen, unter anderem Axel Jessner vom Max-Planck Institut für Radioastronomie in Bonn, fanden jetzt bei den Millionen Jahre alten Pulsaren weder einen Hinweis auf Röntgenstrahlung von der gesamten Neutronensternoberfläche, noch auf heiße Polkappen - obwohl die Forscher intensive Röntgenstrahlung von geladenen Teilchen aus der Magnetosphäre registrierten.

Das Fehlen der Röntgenstrahlung von der gesamten Sternoberfläche überraschte die Wissenschaftler nicht: In den vielen Millionen Jahren seit der Entstehung dieser Neutronensterne sind diese bereits soweit abgekühlt, dass ihre Temperatur weit unterhalb von 500000 Grad Celsius liegt und sich ihr Glühen daher nicht mehr im Röntgenbereich beobachten lässt. Zum Erstaunen der Forscher gaben aber auch die heißen Polkappen keine Röntgenstrahlung ab. Das zeigt, dass die Heizung der Polkappen durch hochenergetische Teilchen bei alten Pulsaren nicht mehr effizient genug funktioniert. "Im Fall des drei Millionen Jahre alten Pulsars mit der Katalogbezeichnung PSR B1929+10, des Prototyps eines alten Pulsars, ist jegliche thermische Komponente in der beobachteten Röntgenstrahlung kleiner als sieben Prozent", sagt Becker.

Wie sich nun zeigt, ist die konventionelle Sichtweise für die Entstehung der heißen Flecken bei jüngeren Pulsaren nicht die einzig mögliche. Eine alternative Interpretation lautet, dass die im Neutronenstern gespeicherte Wärmeenergie durch das starke Magnetfeld zu den Polen geleitet wird, die dadurch Temperaturen von Millionen Grad besitzen. Das ist möglich, weil die Wärmeleitung in Neutronensternen durch Elektronen geschieht. Da diese eine elektrische Ladung tragen, ist ihre Bewegungsrichtung durch die Richtung des Magnetfelds vorgegeben.

Entsprechend könnten die Millionen Grad heißen Flecken bei jüngeren Pulsaren im Wesentlichen durch die Hitze aus dem Innern des Neutronensterns entstehen, und nicht nur durch das Bombardement der zur Oberfläche zurückfliegenden hochenergetischen Teilchen. Die heißen Flecken verschwinden dann mit dem Abkühlen der Neutronensterne und sind entsprechend bei den Millionen Jahre alten Pulsaren nicht mehr zu beobachten. "Die Gültigkeit dieser Sichtweise wird zurzeit in der Fachwelt noch diskutiert, jedoch legen die neuen, mit XMM-Newton durchgeführten Beobachtungen eine solche Interpretation sehr nahe", sagt Werner Becker.


Hintergrund:
Die Pulsare wurden im Jahr 1967 von den beiden Astronomen Jocelyn Bell-Burnell und Anthony Hewish an der englischen Universität Cambridge entdeckt. Hinter diesen Objekten verbergen sich so genannte Neutronensterne: schnell rotierende und stark magnetisierte Überreste kollabierter massereicher Sterne, die am Ende ihres Lebens in einer Supernova-Explosion zugrunde gehen. Dabei erreichen die Sternleichen eine so hohe Dichte - 1,4 Sonnenmassen konzentrieren sich in einem Raumbereich von nur etwa 20 Kilometer Durchmesser -, dass Elektronen in die Atomkerne dringen und dort zur Entstehung von Neutronen führen. In Neutronensternen und deren Magnetosphären spielen sich sehr komplexe und bis heute nur im Ansatz verstandene Prozesse ab.

[MPG- HOR/WB]

Weitere Infos:


  • Originalveröffentlichung:
    Werner Becker et al.
    A Multiwavelength study of the Pulsar PSR B1929+10 and its X-ray trail
    Astrophysical Journal (ApJ), Vol. 645, Seite 1421ff., 10. Juli 2006


EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen