Heiße Sache mit Hochleistungslaser!
Neue Single-Shot-Probing-Technik visualisiert erstmals Entwicklung von Plasmen an Festkörperoberflächen.
Die Wechselwirkung von hochintensiven, ultrakurzen Laserpulsen mit Festkörpern hat in den zurückliegenden Jahren bedeutende technologische Möglichkeiten eröffnet: So ermöglicht etwa die Laserablation die hochpräzise Bearbeitung von Materialien und damit die Miniaturisierung von Bauelementen in medizinischen oder Telekommunikationsanwendungen. Das Zusammenspiel von intensiven Laserpulsen und Festkörpern kann außerdem genutzt werden, um beschleunigte Ionenstrahlen zu erzeugen, die in der Krebsbehandlung, der Fusionsenergieforschung oder der schonenden Analyse von Kulturgütern zum Einsatz kommen können.
„Um diese und weitere Anwendungen für Industrie und Medizin nutzbar zu machen, müssen jedoch noch einige Herausforderungen bewältigt werden“, sagt Prof. Dr. Malte Kaluza von der Friedrich-Schiller-Universität Jena. Vor allem, so der Experte für Relativistische Laserphysik, müsse die Forschung die Frage beantworten, wie genau das Plasma auf der Materialoberfläche entsteht, das sowohl für die Materialbearbeitung als auch die Erzeugung von Ionenstrahlen erforderlich ist. Ein internationales Team um Kaluza hat nun einen bedeutenden Fortschritt bei der Aufklärung dieses laserinduzierten Festkörper-Plasma-Übergangs erzielt.
Trifft die Energie eines ultrakurzen Laserpulses auf eine feste Oberfläche, so wird diese binnen kürzester Zeit auf mehrere Millionen Grad und mehr erhitzt, die Elektronen lösen sich lawinenartig aus den Atomen und bilden eine immer dichtere „Wolke“, wobei die Festkörperoberfläche ionisiert wird. „Das Ganze passiert innerhalb von weniger als einer Pikosekunde – dem Billionstel einer Sekunde“, sagt Kaluza. Und genau das sei der Grund, warum die bei der Plasmabildung ablaufenden komplexen Prozesse auch immer noch nicht vollständig verstanden sind. „Experimentell war diese Anfangsphase der Wechselwirkung von Laserpuls und Material kaum zugänglich, weshalb für diesen ultraschnellen Übergang vom Festkörper zum Plasma in den meisten numerischen Modellen, die eine solche Wechselwirkung beschreiben, bisher eher grobe Annahmen gemacht werden mussten.“
Das Team von Universität und Helmholtz-Institut Jena hat gemeinsam mit Forschenden aus Lyon, Bordeaux und Paris eine optische „Single-Shot-Probing-Technik“ vorgestellt, die diese Dynamik vollständig visualisiert und mit der sich die Entwicklung vom kalten Festkörper zum heißen Plasma beobachten lässt. Ausgangspunkt ist eine hauchdünne transparente Folie aus Kohlenstoff, die mit dem Hochleistungslaser POLARIS (Petawatt Optical Laser Amplifier for Radiation Intensive ExperimentS) beschossen wird. Dieser sogenannte Pump-Puls erzeugt auf der Folie das Plasma. Dadurch wird die ursprünglich transparente Folie durch die entstehende, immer dichter werdende Wolke aus freien Elektronen undurchsichtig.
„Diesen Prozess können wir nun im Experiment beobachten“, erläutert Yasmina Azamoum, Doktorandin am Lehrstuhl für relativistische Laserphysik. „Dazu verwenden wir einen ultrakurzen Probe-Puls mit einem breiten optischen Spektrum.“ Dieser Probe-Puls wird so präpariert, dass seine verschiedenen Farben zum Teil nach vorne und zum Teil nach hinten geschoben werden (der Puls erhält einen Chirp). Der Puls wird dadurch zeitlich in die Länge gezogen. „Beleuchten wir nun mit diesem zeitlich gestreckten Probe-Puls die Folie, mit der der Pump-Puls auf der Oberfläche wechselwirkt, können wir die zeitliche Entwicklung des Plasmas beobachten. Die verschiedenen Entwicklungsphasen des Plasmas sind dann in den unterschiedlichen Farben des transmittierten Probe-Pulses gespeichert, den wir hinter der Folie in ein Spektrometer leiten und so seine verschiedenen Farben voneinander trennen können.“
Für die Interpretation der so gemessenen Transmissionsprofile hat das Team mit den Kollegen aus Frankreich ein zweistufiges Wechselwirkungsmodell entwickelt, bei dem in der ersten Stufe die Ionisationsdynamik im festen Zustand und in der zweiten Stufe die Aufheizung und Ausdehnung im Plasmazustand berücksichtigt wird. „Damit können wir erstmals sehr detailliert und mit hoher zeitlicher und räumlicher Auflösung die ablaufenden Prozesse erfassen“, unterstreicht Kaluza die Bedeutung der Arbeit. Die Forschenden erwarten, dass davon sowohl die Methoden der ultraschnellen Laserbearbeitung von Materialien als auch die laserbeschleunigte Ionentechnologie profitieren können.
FSU Jena / LK
Weitere Infos