05.04.2012

Hochleistungslaser für die Wellenjäger

Das dritte und vorerst letzte Lasersystem für die amerikanischen Gravitationswellendetektoren LIGO hat seine Reise von Hannover nach Hanford (Washington) angetreten.

Geht alles nach Plan, werden ein gut 350 Kilogramm schwerer Laserkopf, dazu mehrere 100 Kilogramm Kabel, Elektronik und Optiken in Kürze ihren Bestimmungsort in den USA erreichen. Nach zwei bereits im vergangenen Jahr erfolgreich installierten identischen Systemen, steht somit bald der dritte 200-Watt-Hochleistungslaser aus Hannover für die Integration in die amerikanischen Gravitationswellendetektoren zur Verfügung.

Abb.: LIGO besteht aus mehreren Interferometern mit einer Armlänge von jeweils vier Kilometern, die an den Standorten Hanford/Washington (hier im Bild) und Livingston/Louisiana in den USA platziert sind. (Bild: www.ligo.org/multimedia/gallery/lho.php)


Ab 2014 sollen an den Standorten Hanford und Livingston die ersten direkten Messungen winziger Raumzeit-Änderungen stattfinden. Diese Gravitationswellen wurden vor über 90 Jahren von Albert Einstein vorausgesagt. 1974 gelang es Russell A. Hulse und Joseph H. Taylor, Gravitationswellen indirekt nachzuweisen. Sie erhielten dafür 1993 den Nobelpreis. Jetzt ist der erstmalige direkte Nachweis von Gravitationswellen in greifbare Nähe gerückt, denn es stehen entsprechend hochpräzise Messtechnologien zur Verfügung. Die Hannoveraner Laser sind das Herzstück dieser Technologien.

„Die Laser für Advanced LIGO sind ein gutes Beispiel für die zentrale Rolle unseres deutsch-britischen Gravitationswellendetektors GEO600 im internationalen Netzwerk der Gravitationswellenobservatorien: GEO600 ist die experimentelle Technologieschmiede. Die im Projekt entwickelten Technologien ermöglichen die extrem präzisen Längenmessungen, die für eine direkte Beobachtung von Gravitationswellen erforderlich sind“, so Dr. Benno Willke, Projektleiter der Advanced LIGO Laserentwicklung, am Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Institut für Gravitationsphysik, Leibniz-Universität Hannover.

Um die außergewöhnlich hohen Messanforderungen für Gravitationswellen erfüllen zu können, sind Laseroszillatoren höchster Strahlqualität und Belastbarkeit gefragt. Wissenschaftler des Laser Zentrums Hannover (LZH) und des Albert-Einstein-Instituts Hannover (AEI) haben gemeinsam mit der Firma neoLASE in insgesamt 10 Jahren mehrere Prototypen mit verbesserter Leistungsfähigkeit entwickelt. Das aktuelle Lasersystem für die „Advanced LIGO“-Phase ist mit einer Ausgangsleistung von etwa 200 Watt bei einer Wellenlänge von 1064 Nanometern um einen Faktor 5 leistungsstärker als Laser der vorausgegangenen Phase „Enhanced LIGO“.

Abb.: Innenleben des 200-Watt-Laseroszillators für LIGO. (Bild: LZH)


Während das in der „Enhanced LIGO“-Phase genutzte Lasersystem ein reines Verstärkersystem ist, werden für das aktuelle „Advanced LIGO“-Lasersystem dieses Verstärkersystem und ein Hochleistungslaseroszillator gekoppelt. Das Gesamtsystem vereint dann die guten Eigenschaften der beteiligten Subkomponenten: das monofrequente Verstärkersystem bestimmt die Frequenzstabilität, der Hochleistungsoszillator die Strahlqualität und die Ausgangsleistung ergibt sich aus der Summe beider Teilsysteme.

„Eine der großen Herausforderungen für uns Wissenschaftler und Ingenieure war, das System von einem ersten Laborprototypen, an dem die grundsätzlichen Spezifikationen demonstriert wurden, so weit zu entwickeln, dass es mit konstanter Leistung und Frequenz zuverlässig rund um die Uhr mehrere Jahre betrieben werden kann“, beschreibt Peter Weßels die besondere Anforderung der letzten Jahre. Er leitet die an der Entwicklung der LIGO-Laser maßgeblich beteiligte Gruppe „Single Frequency Lasers“ am LZH.

Die Laser sind für die eigentliche Messung in einem Michelson-Interferometer von gigantischem Ausmaß verantwortlich. Dieses Interferometer ist im Vakuum in den rechtwinklig zueinander stehenden, vier Kilometer langen Armen des Observatoriums untergebracht. Durchquert eine Gravitationswelle das Observatorium, ändern sich die relativen Längen der Arme des Interferometers. Während der eine Arm gedehnt wird, verkürzt sich der andere Arm, was eine Phasenverschiebung der Teilwellen des Laserlichtes bewirkt. Die dabei auftretende Interferenz ändert die Intensität des gemessenen Lichtes am Ausgang des Interferometers. Der Aufbau erlaubt, einen relativen Unterschied in den beiden Armlängen von 10−22 zu messen.

Nach Integration des jetzt ausgelieferten Lasers in den Gravitationswellendetektor im Mai muss der Detektor noch von Firmen und Instituten aus den USA und dem Rest der Welt mit weiteren, auf die neue Lichtquelle abgestimmten, Komponenten aufgerüstet werden. Frühestens in zwei Jahren sind dann die ersten „science runs“ mit dem neuen Laser möglich. Auch für die Forscher von LZH und AEI ist die Arbeit nach dieser vorerst letzten Auslieferung nicht abgeschlossen: Sie befassen sich bereits mit der Entwicklung von Lasern für „Gravitationswellendetektoren der 3. Generation“.

LZH / PH

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen