Hüpfende Vortizes
Turbulenzen in Flüssigmetall zeigen überraschend dreidimensionales Verhalten.
Wer eine Flüssigkeit erwärmt, löst unweigerlich Turbulenzen aus: Heißes Fluid steigt auf und durchmischt sich mit dem kälteren Rest. In gewissen Fällen können sich dabei mehrere Wirbel zu einer größeren Struktur – einer großskaligen Zirkulation – zusammenschließen. Mit Kollegen der University of California in Los Angeles (UCLA) hat Tobias Vogt vom Helmholtz-
Abb.: Bei Experimenten mit flüssigem Gallium konnten Forscher zeigen, dass die großskalige Zirkulation einen Wirbel formt, der sich wie ein Springseil bewegt. (Bild: HZDR / T. Vogt)
Ein Beispiel dafür findet sich am Wolkenhimmel. Weht der Wind aus einer bestimmten Richtung, können sich mehrere Kumuluswolken über Dutzende Kilometer aufreihen – es entsteht eine Wolkenstraße. Auch auf der Sonne lässt sich das Phänomen beobachten: Schaut man sich ihre Oberfläche durch ein Spezialteleskop an, erscheint sie als Ansammlung vieler Körnchen. Diese „Granulation“ kommt durch Konvektion zustande: Von unten steigt heißes, hell erscheinendes Material an die Oberfläche, kühlt dort ab und sinkt am Rand eines Körnchens als dunkles Material wieder hinab. Diese Körnchen sind bis zu 1000 Kilometer groß und existieren nur wenige Minuten.
„Bislang ging die Fachwelt davon aus, dass es sich bei diesen großskaligen Zirkulationen mehr oder weniger um zweidimensionale Strukturen handelt“, erklärt Tobias Vogt vom HZDR-
Kern des Experiments war ein zylindrischer Behälter von der Größe einer Keksdose, gefüllt mit flüssigem Gallium – ein Metall, das bereits bei knapp 30 Grad Celsius schmilzt. „Es leitet sehr gut Wärme und ist dreimal dünnflüssiger als Wasser“, erläutert Tobias Vogt. „Konvektionsphänomene können dadurch sehr deutlich in Erscheinung treten.“ Während sich der Boden des Behälters bis auf siebzig Grad Celsius heizen ließ, konnte der Deckel auf rund dreißig Grad Celsius gekühlt werden. Durch diesen Temperaturunterschied geriet das Flüssigmetall in Wallung: Heißeres Fluid stieg auf, überall in der Dose bildeten sich Turbulenzen.
Um das Geschehen zu beobachten, musste das Team eine spezielle Ultraschalltechnik verwenden: „Da Gallium nicht durchsichtig ist, kamen Laserverfahren nicht infrage“, beschreibt Vogt. „Stattdessen setzten wir ein Verfahren ein, wie es im Prinzip auch Mediziner nutzen, wenn sie Blutströme in Gefäßen sichtbar machen wollen.“ Konkret schickten die Forscher kurze Ultraschallpulse in den Behälter. Abhängig von der Strömungsgeschwindigkeit wurden die Pulse unterschiedlich reflektiert, was sich mit Sensoren messen ließ. Das Resultat waren dreidimensionale Strömungsprofile des turbulenten Flüssigmetalls, ergänzt durch numerische Simulationen auf einem Supercomputer.
In sämtlichen Profilen ließen sich die großskaligen Zirkulationen deutlich erkennen – sie erinnern an eine Luftschlange, die die gesamte Dose ausfüllt. „Zu unserer Überraschung stellten wir fest, dass sich diese Struktur ähnlich wie ein Springseil bewegt“, erklärt Vogt. „Sie kreist beständig vor sich hin – sowohl die Bewegung als auch die Struktur der großskaligen Zirkulation sind ganz klar dreidimensional.“ Das weckt Zweifel an den gängigen theoretischen Beschreibungen. Sie hatten das Phänomen als quasi zweidimensionales Problem behandelt und müssen nun überdacht werden.
Um schließlich zu prüfen, ob sich die Springseil-
HZDR / DE