Inhomogene Erwärmung verkürzt den Schmiedeprozess
Verfahren vereinfacht komplexe Vorformoperationen – oder macht sie ganz überflüssig.
Vorformoperationen dienen dazu, die Massenverteilung eines Rohteils dem gewünschten Schmiedeteil anzunähern, um den Gratanteil sowie den Gesenkverschleiß zu reduzieren. Ein geringerer Gratanteil bedeutet geringere Material- und auch Energiekosten. Ein geringerer Gesenkverschleiß führt zu einer Reduzierung der Produktionskosten bei gleichzeitiger Erhöhung der Prozessstabilität. Mit einem neuen Verfahren, das am Institut für integrierte Produktion Hannover erforscht wird, sollen solche Vorformoperationen verkürzt oder gänzlich eingespart werden.
Abb.: Vorformoperationen bringen die Masse dorthin, wo sie später gebraucht wird. In Zukunft soll das auch durch inhomogene Erwärmung ermöglicht werden. (Bild: R. Büchler, IPH)
Bislang waren vergleichbare Ergebnisse auch durch das Vorformen im Gesenk oder durch Querkeilwalzen zu erzielen. Das Gesenkschmieden kann unter Umständen zwar günstiger sein, setzt aber beim Vorformen im geschlossenen Gesenk eine aufwändige Auslegung voraus oder verursacht beim Vorformen im offenen Gesenk einen hohen Gratanteil. Querkeilwalzen hingegen verursacht weniger Grat, ist jedoch sehr viel teurer und lohnt sich deshalb erst ab einer großen Stückzahl, was es vor allem für kleine und mittlere Unternehmen unattraktiv macht.
Am IPH wird nun ein dritter Weg untersucht: Indem das Rohteil durch Induktion inhomogen erwärmt und anschließend gestaucht wird, soll die Massenverteilung dem Bauteil angenähert werden. Die Wissenschaftler wollen ermitteln, welchen Effekt die inhomogene Erwärmung von Rohteilen auf die nachfolgenden Schritte der Schmiedeprozesskette hat. „Die Vorversuche zeigen in eine vielversprechende Richtung“, sagt Arne Jagodzinski vom IPH. „In ein paar Jahren wird daraus eine industriereife Fertigungsmethode.“ Wenn es so weit ist, soll die inhomogene Erwärmung den Schmiedeprozess verkürzen und energieeffizienter ausgestalten.
Induktion wird bereits seit langem im Schmiedeprozess eingesetzt – doch bislang nur zur homogenen oder auch zur partiellen Erwärmung von Bauteilen. Bei der partiellen Erwärmung werden einzelne Bereiche eines Rohteils auf eine gewünschte Temperatur erwärmt, während andere Bereiche kalt bleiben. Die Besonderheit an dem neuen Verfahren ist die Verwendung von inhomogener Erwärmung. Das heißt, dass das Rohteil insgesamt erwärmt wird – manche Bereiche allerdings auf beispielsweise 900, andere wiederum auf 1250 Grad Celsius. Beim Stauchen kann so in dem wärmeren Bereich mehr Masse kumuliert werden als in den kälteren Bereichen. Besonders interessant ist dabei der Übergangsbereich zwischen den warmen und den weniger warmen Zonen. Wie groß und wie stabil ist dieser – und wie lässt er sich einstellen?
Dazu identifizieren die Wissenschaftler in Vorversuchen Kennzahlen, die den Übergangsbereich charakterisieren. Sie ermitteln auf diese Weise Parameter, die es ihnen später in der Praxis erlauben, den Übergangsbereich möglichst genau einzustellen. Idealerweise ist dieser stabil, klein und weist einen großen Temperatursprung auf. Ein Problem kann aber beispielsweise sein, dass sich die unterschiedlich warmen Bereiche zu schnell einander annähern und keine klare Trennung zwischen den Zonen aufrechterhalten werden kann. Anhand eines Common-
Um den Nutzen der neuen Methode feststellen zu können, vergleichen die Wissenschaftler die Verwendung von inhomogener Erwärmung in verschiedenen Prozessketten mit dem Querkeilwalzen. Jagodzinski geht davon aus, dass die verschiedenen Prozesse Abweichungen bei den Temperaturfeldern oder beim Schmiedeprozess aufweisen werden. Es wird unter anderem auch betrachtet, ob das freie Stauchen als Zwischenschritt ausgelassen werden und das inhomogen erwärmte Rohteil direkt fertiggeschmiedet werden kann. Sollte diese Variante gelingen, böte die neue Methode eine erhebliche Erleichterung für die Industrie, die ihre Bauteile so sehr viel schneller, energie- und ressourcenschonender produzieren könnte.
Schließlich soll ein Modell entwickelt werden, das Vorhersagen darüber zulässt, wie sich inhomogene Erwärmung auf den Schmiedeprozess auswirkt und wie dieser Prozess ausgelegt werden kann. Dazu sollen die gewonnenen Ergebnisse extrapoliert und die daraus ermittelten Werte stichprobenartig überprüft werden. Nachdem die Simulation und die Werkzeugkonstruktion abgeschlossen und das Parameterfeld identifiziert ist, werden die Wissenschaftler vom IPH zur Verifizierung ihrer Ergebnisse experimentelle Untersuchungen vornehmen. Anschließend werden die Anlagen eines Industriepartners umgerüstet und das neue Verfahren unter realen Bedingungen erprobt.
IPH / RK