27.08.2018

Kälterekord für lasergekühlte Moleküle

Hocheffizientes Kühlverfahren ermög­licht Ab­bil­dung ein­zelner Mole­küle in optischer Falle.

Vielteilchen-Quantensysteme eignen sich nicht nur hervorragend zum Testen funda­men­taler Frage­stel­lungen in der Physik. Sie werden auch zuneh­mend inte­res­sant für die Quanten­infor­ma­tions­ver­arbei­tung und für Quanten­simu­la­tionen. Die Her­stel­lung und Kontrolle dieser Systeme benötigt üblicher­weise sehr tiefe Tempe­ra­turen nahe dem abso­luten Null­punkt. Für Atome gibt es bereits sehr effek­tive Kühl­ver­fahren, bei Mole­külen gestaltet sich dies jedoch sehr viel schwieriger. Eine Gruppe von Wissen­schaftlern um Wolf­gang Ketterle und John Doyle von der Univer­sität Harvard und dem Massa­chu­setts Insti­tute of Techno­logy hat nun ein neues Ver­fahren ent­wickelt, das einige Probleme bis­heriger Ver­fahren umgeht. Auf diese Weise konnten sie nicht nur den bis­herigen Tempe­ratur­rekord für laser­ge­kühlte Mole­küle unter­bieten, sondern auch ein Abbil­dungs­ver­fahren an den Mole­külen in der optischen Falle demon­strieren, das eine sehr viel höhere Aus­beute an Photonen ermög­licht.

Abb.: Die neue Methode macht es möglich, ein­zelne Mole­küle in optischen Fallen nicht­destruk­tiv bei tief­sten Tempe­ra­turen ab­zu­bilden. (Bild: L. Anderegg, Harvard U. / APS)

Grundlage für das neue Verfahren ist eine spezielle Kühl­methode, die auf der Sisyphus-Kühlung auf­baut, mit der sich außer­ordent­lich tiefe Tempe­ra­turen erreichen lassen. Bei der Sisyphus-Kühlung, für deren Vor­schlag Claude Cohen-Tannoudji 1997 den Physik-Nobel­preis erhielt, laufen zwei Laser­strahlen mit ortho­gonal ver­setzter Polari­sa­tion gegen­ein­ander und erzeugen so eine stehende Welle mit einem Polari­sa­tions­gradienten. Atome, die diese Welle durch­laufen, ver­lieren Energie, wenn sie sich gegen den Polari­sa­tions­gradienten bewegen. Durch geschicktes optisches Pumpen, bei dem die Atome von den Poten­zial­maxima in einen nieder­energe­tischen Zustand gebracht werden, lassen sich so Tempe­ra­turen weit unter­halb dessen erreichen, was mit normaler Doppler-Kühlung möglich wäre.

Bei der „gray molasses” genannten Kühlungsmethode nutzt man darüber hinaus dunkle Zustände in den Atomen oder Mole­külen, die sich etwa mit Hilfe zirkular polari­sierter Laser­strahlung erzeugen lassen. Wenn man die Kopp­lung zwischen hellen und dunklen Zuständen nun so ein­richtet, dass die kältesten Atome in den dunklen Zuständen gefangen bleiben, während die wärmeren Atome in den Sisyphus-Kühl­zyklus zurück­kehren, lassen sich noch­mals sehr viel tiefere Tempe­ra­turen erreichen. Bei alkali­artigen Atomen lässt sich außer­dem ein zweiter Mecha­nismus ein­richten, bei dem geschwin­dig­keits­ab­hängige dunkle Zustände durch Zwei-Photon-Reso­nanzen erzeugt werden. Mit dieser Methode namens „lambda-enhanced gray molasses” lassen sich außer­ordent­lich tiefe Tempe­ra­turen erreichen, die sogar unter­halb des Rück­stoßes eines ein­zelnen Photons liegen.

Die Kühlung von Molekülen ist aber sehr viel schwieriger als die von Atomen, da Mole­küle nicht nur eine kom­plexere elek­tro­nische Struktur besitzen, sondern auch noch viele Frei­heits­grade an mög­lichen Schwin­gungs- und Rota­tions­zuständen auf­weisen, die noch dazu mit der optischen Falle wechsel­wirken können. Wie Wolf­gang Ketterle, der 2001 den Nobel­preis für Physik für seine bahn­brechenden Arbeiten zur Erzeu­gung von Bose-Einstein-Konden­saten erhielt, und Kollegen erst kürz­lich zeigen konnten, lassen sich Kalzium-Mono­flourid-Mole­küle auf diese Weise im freien Raum auf bis zu fünf Mikro­kelvin herunter­kühlen, etwa eine Größen­ord­nung tiefer als mit üblichen Methoden. In optischen Fallen konnten die Forscher auf diese Weise zudem eben­falls etwa um eine Größen­ord­nungen mehr und dichter gepackte Mole­küle unter­bringen. Dabei war es ihnen gelungen, für die 150 gefan­genen Kalzium-Mono­fluorid-Mole­küle eine Tempe­ratur von sechzig Mikro­kelvin sowie eine Dichte von 8 × 107 cm-3 zu erreichen.

Diese Werte konnten sie dank einer verfeinerten Kühl­technik nun noch­mals deut­lich ver­bessern: In der Falle befanden sich nun 1300 Mole­küle bei nur noch zwanzig Mikro­kelvin und einer zehn­fach höheren Dichte – ein neuer Rekord für Tempe­ratur und Dichte bei laser­ge­kühlten Mole­külen.

Üblicherweise nutzt man etwa resonante Fluoreszenzstrahlung, um die gefan­genen Teil­chen abzu­bilden. Da die Photonen jedoch über ihren Rück­stoß Energie an die Mole­küle abgeben, führt dies zu einer Erwärmung, die die Mole­küle aus der optischen Falle hinaus­treiben kann und des­halb destruktiv wirkt. Dank der effi­zienten Kühl­methode lassen sich diese Ver­luste aber ver­meiden: Indem sie die bei der Lamda-Kühlung gestreuten Photonen auf­nahmen, konnte das Forscher­team die Verlust­rate an Mole­külen stark begrenzen. Pro Molekül konnten sie rund 2700 Photonen auf­fangen – etwa zwei­hundert Mal mehr als mit üblichen Methoden. Während dieser Messungen gingen nur rund zehn Prozent der Mole­küle verloren.

Damit lassen sich mit einer Aufnahme einzelne Moleküle abbilden. Die Forscher hoffen, dass sich in Zukunft mit den lamda­ge­kühlten Mole­külen nicht nur funda­men­tale Tests der Quanten­physik durch­führen lassen. Solche Systeme eignen sich auch zum Studium ultra­kalter chemischer Prozesse. Das Ver­fahren ist auch nicht auf Kalzium-Mono­fluorid beschränkt, sondern sollte mit einer ganzen Reihe ähn­licher Mole­küle funktio­nieren, die man in eine optische Falle sperrt oder mit Hilfe einer optischen Pinzette mani­pu­liert.

Dirk Eidemüller

RK

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Jobbörse

Physik Jobbörse in Bonn
Eine Kooperation von Wiley und der DPG

Physik Jobbörse in Bonn

Bonn, 11.-13.03.2025
Die Präsentationen dauern jeweils eine Stunde, am Ende der Veranstaltung ist Zeit für Q&A eingeplant.

Meist gelesen

Themen