Kagome-Supraleiter bricht Zeitumkehrsymmetrie
Unkonventionelle Supraleitung in Kagome-Metall geht mit Brechung der Zeitumkehrsymmetrie einher.
Auf dem Weg zu einer neuen Art von Supraleitung: Erst vor etwa vier Jahren haben Forscher herausgefunden, dass es Metalle gibt, in denen Atome wie in einem japanischem Flechtkorbmuster angeordnet sind – Kagome-Metalle. Ein internationaler Forschungshype um die metallische Wunderwerkstoffklasse begann, der nun einen weiteren Meilenstein erreicht hat: Die Kagome-Struktur des Atomgitters führt zu einer außergewöhnlichen Kombination von herausragenden Quanteneigenschaften, die jetzt von einem internationalen Team erstmals nachgewiesen wurden und eine ganz neue Art von Supraleitung ermöglichen könnten. Ronny Thomale, Forscher des Würzburg-Dresdner Exzellenzclusters ct.qmat, sagte solche Quanteneffekte bereits vor zehn Jahren theoretisch voraus. Heute unterstützen seine Ideen Forscher weltweit bei der Interpretation ihrer Messdaten.
Ein Kagome-Muster besteht aus drei regelmäßigen, ineinander verschobenen Dreiecksgittern. Im Ergebnis erscheint die Struktur wie eine endlose Aneinanderreihung von Davidsternen. In Japan ist Kagome ein traditionelles Korbflechtmotiv. Die Festkörperphysik erforscht die ungewöhnliche Atomgitterform seit den 1990er-Jahren. Bis 2018 nahm man jedoch an, dass Kagome-Materialien vor allem elektrische Isolatoren mit interessanten magnetischen Eigenschaften sein könnten. Dass es auch anders geht, sagte Ronny Thomale, Wissenschaftler des Würzburg-Dresdner Exzellenzclusters ct.qmat – Komplexität und Topologie in Quantenmaterialien, allerdings bereits 2012 vorher. Vor rund vier Jahren wurde dann das erste Metall mit Kagome-Struktur realisiert, bestehend aus einer Eisen-Zinn-Verbindung.
„Seitdem sind Kagome-Metalle im experimentellen Bereich angekommen und lösten einen echten Forschungshype aus. Weltweit ist man auf der Suche nach Kagome-Metallen, die außergewöhnliche Quantenphänomene zeigen. Ziel ist, auf ein Material zu stoßen, das zum Beispiel eine ganz neue Art von Supraleitung ermöglichen könnte“, erklärt der theoretische Physiker Ronny Thomale.
Einer internationalen Forschungskooperation unter Leitung des Schweizer Paul Scherrer Instituts ist nun ein weiterer Fortschritt gelungen: Im Kagome-Metall Kalium-Vanadium-Antimon konnten erstmals mehrere außergewöhnliche Quantenphänomene gleichzeitig experimentell nachgewiesen werden.
Hierfür wurde dieses Kagome-Metall so tiefgekühlt, bis es supraleitend wurde, also den Strom verlustfrei leitete. In dieser Phase wurden eindeutige Hinweise auf eine Brechung der Zeitumkehrsymmetrie gefunden.
„Wenn die Zeitumkehrsymmetrie in einem nichtmagnetischen System gebrochen ist, klingeln bei uns Physikern alle Alarmglocken“, sagt Thomale. „Nur etwa ein Prozent aller Supraleiter zeigt das Phänomen, dass ‚vorwärts’ und ‚rückwärts’ auf der Ebene der Elementarteilchen überhaupt eine Rolle spielen. Besonders verblüffend war, dass dies schon bei verhältnismäßig hohen Temperaturen um -190 Grad Celsius eingesetzt hat. Im Kagome-Metall kann das passieren, weil sich die Elektronen auf dieser außergewöhnlichen Gitterstruktur auch außergewöhnlich verhalten: Sie ordnen sich wellenartig an, sodass mal mehr und mal weniger Elektronen auf den einzelnen Kagome-Atomgitterplätzen vorkommen. Durch diese Wellen, die wir Ladungsdichtewellen nennen, können die Elektronen zudem in eine bestimmte Richtung fließen und so Orbitalströme bilden. Bei der Bewegung in eine bestimmte Richtung werden ‚vorwärts’ und ‚rückwärts’ unterscheidbar und damit die Zeitumkehrsymmetrie gebrochen. Das hat die weltweite Forschungscommunity sehr erstaunt.“
Nachdem 2018 das erste Metall mit einer Kagome-Atomgitterstruktur realisiert werden konnte, wurde die spontane ladungswellenartige Anordnung der Elektronen im Kagome-Atomgitter 2020 experimentell nachgewiesen. Mit den vorliegenden Forschungsergebnissen kommt jetzt der erste experimentelle Nachweis der Zeitumkehrsymmetrie-Brechung hinzu. Als Höhepunkt dieser Quanteneffekte wurde erstmals eine neue, unkonventionelle Art von Supraleitung nachgewiesen.
„Der Nachweis dieser neuen Art von Supraleitung in den Kagome-Metallen wird den weltweiten Forschungsboom in der Quantenphysik weiter befeuern“, prognostiziert der Dresdner Sprecher der Forschungsallianz ct.qmat, Matthias Vojta. „Im Würzburg-Dresdner Exzellenzcluster ct.qmat erforschen wir die neue Kagome-Materialklasse mit verschiedenen experimentellen Methoden und sind besonders stolz, dass unser Gründungsmitglied Ronny Thomale hierfür entscheidende Vorarbeiten geleistet hat.“
Ronny Thomale (39) hat seit Oktober 2016 den Lehrstuhl für Theoretische Physik I an der Julius-Maximilians-Universität Würzburg inne und gehört zu den 25 Gründungsmitgliedern des Exzellenzclusters ct.qmat. 2012 entwickelte er – parallel zur Forschungsgruppe von Qianghua Wang der Nanjing University – eine Theorie, die als entscheidende Grundlage für das Verständnis der neuen experimentellen Resultate von Kagome-Metallen gilt.
Mit dem Nachweis der Zeitumkehrsymmetrie-Brechung ist die Hoffnung auf eine neue Form verlustfreier Stromleitung verbunden, die als Hochtemperatursupraleitung idealerweise bei Raumtemperatur funktionieren könnte. Forscher weltweit werden die zielgerichtete Suche nach Materialkombinationen für Kagome-Metalle fortsetzen und intensivieren. Aus experimenteller Sicht fehlt noch der hochkomplexe, unmittelbare Nachweis orbitaler Ströme, die bisher nur indirekt gemessen werden konnten. Gelingt es, die orbitalen Ströme in einem Kagome-Metall direkt zu zeigen, wird ein weiterer Meilenstein erreicht sein.
U. Würzburg / DE