Karte des Kleinhirns
Phasenkontrast-Tomograph offenbart detaillierte Anordnung von Millionen Nervenzellen.
Das menschliche Kleinhirn beherbergt auf zehn Prozent des Gehirnvolumens etwa achtzig Prozent aller Nervenzellen – auf einen Kubikmillimeter können also über eine Million Nervenzellen entfallen. Diese verarbeiten Signale, welche vor allem erlernte und unbewusste Bewegungsabläufe steuern. Ihre genauen Positionen und Nachbarschaftsbeziehungen sind bislang weitgehend unbekannt. Forscher der Universität und Universitätsmedizin Göttingen haben nun mit einer besondere Variante der Röntgenbildgebung etwa 1,8 Millionen Nervenzellen in der Kleinhirnrinde dargestellt. Gefördert wurde diese Arbeit durch das Exzellenzcluster für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns und den Sonderforschungsbereich SFB 755 Nanoscale Photonic Imaging.
Abb.: Detaillierte Abbildung der Neuronen im Kleinhirn, aufgenommen mit einem Phasenkontrast-Tomographen. (Bild: Univ. Göttingen)
„Durch Tomographie im Phasenkontrastmodus und der anschließenden automatisierten Bildbearbeitung können die Zellen in ihrer genauen Lage lokalisiert und dargestellt werden“, erklärt Mareike Töpperwien vom Institut für Röntgenphysik der Universität Göttingen. Gemeinsam mit ihren Kollegen entnahm sie mit einer Biopsie-Nadel zylindrische Gewebeproben aus Gewebeblöcken, um sie in einem speziellen Phasenkontrast-Tomographen zu vermessen. Konventionelle Instrumente haben den Nachteil, dass kleine Strukturen sowie Gewebe geringer Dichte – wie bei Nervenzellen – wenig bis keinen Kontrast geben und daher nicht abgebildet werden können.
Die innovative Methode der Göttinger setzt hingegen nicht auf die Absorption der Röntgenstrahlung, sondern auf die veränderte Ausbreitungsgeschwindigkeit der Röntgenstrahlung. Die dadurch entstehenden Laufzeitunterschiede werden durch Strahlausbreitung auf einer Freiflugstrecke zwischen Objekt und Detektor indirekt sichtbar. Um scharfe Abbildungen zu erhalten, bearbeiten die Wissenschaftler die Aufnahmen noch durch Algorithmen. Sie können dann die dreidimensionale Elektronendichte des Gewebes aus der gesamten tomographischen Bildreihe rekonstruieren.
„Mit dieser Methode wollen wir in Zukunft auch pathologische Veränderungen, wie sie zum Beispiel bei neurodegenerativen Erkrankungen auftreten, dreidimensional darstellen, zum Beispiel Veränderungen des Nervengewebes bei Krankheiten wie der Multiplen Sklerose“, erklärt Christine Stadelmann-Nessler, Neuropathologin der Universitätsmedizin Göttingen. Durch Kombination von Aufnahmen unterschiedlicher Vergrößerungen erhielt das Göttinger Team eine Kartierung des Kleinhirns über viele Größenordnungen. „In Zukunft möchten wir noch weiter in interessante Hirnregionen reinzoomen können, fast so wie bei Google Maps“, sagt Salditt.
GAU / JOL