08.04.2009

Kohlenstoff-Nanoröhren und die Umwelt

Kohlenstoff-Nanoröhren können Kolloide bilden und sich dadurch in der Umwelt verteilen und gefährliche Schwermetalle wie Uran binden



Kohlenstoff-Nanoröhren haben in den vergangenen 15 Jahren eine steile Karriere gemacht, auch wenn Anwendungen bisher noch begrenzt sind. Neue Forschungsergebnisse zeigen, dass sie neben ihren günstigen mechanischen und elektrischen Eigenschaften aber auch abträgliche Merkmale haben. Auf einen Aspekt, der bisher noch wenig bedacht worden ist, weisen nun Forscher des Forschungszentrums Dresden-Rossendorf hin. „Wenn sich Produkte, die Kohlenstoff-Nanoröhren enthalten, in Zukunft ausbreiten, dann steigt die Wahrscheinlichkeit, dass die Röhren bei Herstellung, Gebrauch oder Entsorgung in die Umwelt gelangen, sich dort weiter verteilen und auf ihrem Weg Schadstoffe wie z.B. Schwermetalle binden“, sagt Harald Zänker, Wissenschaftler am FZD.



Abb.: Rasterelektronenmikroskopische Aufnahme von Kohlenstoff-Nanoröhrchen auf einem Kernspurfilter. Deutlich zu sehen sind außer den Röhrchen auch die 50 Nanometer großen Filterporen. (Bild: Zänker/FZD)


Ein wichtiger Weg, auf dem Kohlenstoff-Nanoröhren in die Umwelt gelangen könnten, ist der über das Wasser. In ihrem Originalzustand sind die hauchdünnen Kohlenstoff-Fäden mit einem Durchmesser von weniger als 50 Nanometern (1 Nanometer = 1 Millionstel Millimeter) zunächst kaum wasserlöslich. Auf den ersten Blick sollten sie also nicht im Grundwasser, Seen o.ä. mobil sein, sondern sich schnell absetzen oder abscheiden. Wenn sich jedoch ihre Oberflächenstruktur verändert, können sie kolloidhaltige Lösungen bilden. Die Veränderung der Oberflächenstruktur kann während der Produktion der Röhren gezielt herbeigeführt oder, wenn sie einmal in die Umwelt freigesetzt worden sind, durch natürliche Prozesse ausgelöst werden.

In einer kolloidhaltigen Lösung ist – anders als bei echten wasserlöslichen Stoffen – der scheinbar gelöste Stoff in Form feiner Partikel im Lösungsmittel verteilt. Diese Partikel sind immer noch viel größer als die Moleküle eines gelösten Stoffes in einer echten Lösung. In Umweltgewässern könnten Kohlenstoff-Nanoröhren in Form von Kolloiden überall hin transportiert werden. Seit kurzem weiß man auch, dass die Röhren sogar Zellwände durchdringen können. Sie könnten also theoretisch auch in tierische und menschliche Zellen vordringen. Die Oberflächenveränderung von Kohlenstoff-Nanoröhren bewirkt noch einen weiteren Aspekt: Sie erhöht ihre Neigung, Schwermetalle anzulagern.

Die Rossendorfer Wissenschaftler haben sowohl Kohlenstoff-Nanoröhren im Originalzustand als auch mit oxidierenden Säuren (z.B. Salpeter- oder Schwefelsäure) veränderte Röhren untersucht. Sie stellten fest, dass Lösungen mit behandelten Kohlenstoff-Nanoröhren Licht stärker streuen. „Das ist ein Indiz dafür, dass sie Kolloide gebildet haben, die sich nicht absetzen“, sagt Zänker. Die FZD-Wissenschaftler wiesen erstmals nach, dass sich das Schwermetall Uran, das in geringsten Mengen überall in der Umwelt und damit auch im Wasser vorkommt, besonders an die Oberfläche behandelter Kohlenstoff-Nanoröhren anlagert. Sie stellten eine um eine Zehnerpotenz höhere Aufnahmekapazität für Uran als bei unbehandelten Kohlenstoff-Nanoröhren fest. „Es ist deshalb plausibel anzunehmen, dass Kohlenstoff-Nanoröhren, wenn sie in die Umwelt gelangen, den Transport von Uran in Umweltwässern und sogar in biologischen Systemen beeinflussen können. Die möglichen Auswirkungen auf Umwelt und Gesundheit hat man bisher generell zu wenig bedacht“, so Zänker.

Andererseits legt die Bindungsfähigkeit von Uran und anderen Schwermetallen aber auch nahe, Kohlenstoff-Nanoröhren zur Entfernung von Schwermetallen aus Wässern einzusetzen. Eine wirtschaftliche Alternative zu klassischen Reinigungsmitteln stellen sie bisher aber noch nicht dar, sagt Zänker. „Letztendlich ist es wichtig, das Verhalten von Kohlenstoff-Nanoröhren in Wässern in Zukunft weiter zu untersuchen“, so der Wissenschaftler. „Erst dann kann man die positiven und negativen Effekte der Kohlenstoff-Nanoröhren besser abwägen.“

Forschungszentrum Dresden-Rossendorf


Weitere Infos:

  • Originalveröffentlichung:
    A. Schierz, H. Zänker: Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environmental Pollution 157, 1088 – 1094 (2009)
    http://dx.doi.org/10.1016/j.envpol.2008.09.045

AL

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen