13.02.2012

Komplexe Grenze zur Quantenwelt

Am Atominstitut der TU Wien gelang es erstmals, Quanten-Korrelationen von Atomen während dem Bilden eines BECs zu messen.

Der Forschungsgruppe von Jörg Schmiedmayer vom Vienna Center for Quantum Science and Technology (VCQ) ist es erstmals gelungen, den Übergang von einem klassischen Gas zu einem quantenphysikalischen Bose-Einstein-Kondensat experimentell genau zu untersuchen. Wie sich herausstellte, machen Wechselwirkungen zwischen den Teilchen die Beschreibung dieses Überganges komplizierter als bisher vermutet wurde.

Abb.: Ein Bose-Einstein-Kondensat fällt nach unten, expandiert dabei und wird in einer dünnen Schicht aus Licht vermessen. (Bild: T. Betz, TU Wien)

„Unsere Messungen sind eng mit den berühmten Hanbury-Brown-Twiss-Experiment verwandt, mit dem man vor mehr als 50 Jahren die Quanteneigenschaften von Licht untersuchte“, erklärt Aurelien Perrin. In diesem Experiment wird ein mathematischer Zusammenhang zwischen den Aufenthaltsorten der Teilchen untersucht – die sogenannte Korrelationsfunktion. Mit ihr lässt sich Quanten-Licht von gewöhnlichen klassischen Licht unterscheiden: Das Licht einer gewöhnlichen Glühbirne ergibt den Wert 2, bei Laserlicht hat diese Korrelationsfunktion den Wert 1. Eine ganz ähnliche Untersuchung wurde nun mit den Atomen an der Schwelle zur Bose-Einstein-Kondensation durchgeführt. Wenn man die Teilchen zu verschiedenen Zeitpunkten untersucht, während sich aus ihnen ein Bose-Einstein-Kondensat bildet, lässt sich nach der Hanbury-Brown-Twiss-Methode messen, wie stark die quantenphysikalischen Korrelationen zwischen den Teilchen ausgeprägt sind und wie sie sich zeitlich entwickeln.

„Nachdem der Zustand von Atomen im Bose-Einstein-Kondensat dem Zustand von Lichtteilchen im Laserstrahl sehr ähnlich ist, hätte man erwartet, auch ähnliche Hanbury-Brown-Twiss-Korrelationen zu messen. Vorhergesagt wird eine flache Verteilung beim Wert 1, was bedeutet, dass die Wahrscheinlichkeit, zwei Teilchen zu detektieren, überall gleich groß ist“, erklärt Perrin. Der Übergang in die Quantenwelt erfolgt dabei sehr rasch. Überraschenderweise wurde aber ein langsamer und komplexer Übergang und ein Korrelationsfunktion mit Werten kleiner als 1 gemessen – ein völlig unerwartetes Ergebnis. „Zuerst haben viele Leute geglaubt, wir hätten einfach einen Fehler gemacht“, schmunzelt Jörg Schmiedmayer, Vorstand des Atominstituts an der TU Wien, „doch wir konnten zeigen, dass dieses Verhalten durch die komplizierte Wechselwirkung zwischen den Atomen entsteht und sogar schon in den bestehenden Theorien versteckt war“.

In einem Bose-Einstein-Kondensat sind nicht ausnahmslos alle Atome im allertiefsten Energiezustand – ein paar Ausreißer gibt es immer. Und diese Atome, die noch ein kleines bisschen mehr Energie haben als der Rest, sind dafür verantwortlich, dass sich das BEC doch anders verhält, als das Licht in einem Laserstrahl. Selbst bei unglaublich kalten 50 Nanokelvin  war dieser Effekt noch zu sehen. „Bose-Einstein-Kondensate sind mittlerweile auf der ganzen Welt zu höchst gefragten Versuchsobjekten für Quanten-Experimente geworden. Diese Messungen sind ein wichtiger Beitrag, unser Verständnis von diesen ultrakalten Objekten zu vertiefen“, meint Schmiedmayer.

TU Wien / OD

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen