Kosmisches Radiowellen-Loch aufgespürt
ALMA misst Verteilung und Temperatur heißer Gase um Galaxienhaufen.
Mit dem Atacama Large Millimeter/Submillimeter Array ALMA konnten Astronomen nun zum ersten Mal erfolgreich ein Radio-Loch um einen 4,8 Milliarden Lichtjahre entfernten Galaxienhaufen nachweisen. Das Bild hat die höchste Auflösung, mit der jemals ein solches Loch abgebildet werden konnte, das durch den Sunyaev-Zel'dovich-Effekt (SZ-Effekt) verursacht wird. Mit dem Bild stellt ALMA eindrucksvoll seine Fähigkeit unter Beweis, die Verteilung und Temperatur des Gases um Galaxienhaufen mit Hilfe des SZ-Effektes zu untersuchen.
Abb.: Messung des SZ-Effekts im Galaxienhaufen RX J1347.5-1145 mit ALMA. Das Hintergrundbild wurde vom Hubble-Weltraumteleskop aufgenommen. Die ALMA-Beobachtungen zeigen ein „Loch“, das durch den SZ-Effekt verursacht wird. (Bild: ALMA / ESO / NAOJ / NRAO, Kitayama et al., NASA / ESA Hubble Space Telescope)
Ein Forscherteam unter der Leitung von Tetsu Kitayama, an der Toho Universität in Japan, und Eiichiro Komatsu, am Max-Planck-Institut für Astrophysik, untersuchten mit ALMA das heiße Gas in einem Galaxienhaufen. Das heiße Gas ist eine wichtige Komponente, um die Eigenschaften und die Entwicklung der Galaxienhaufen zu verstehen. Auch wenn das heiße Gas selbst keine Radiowellen ausstrahlt, die mit ALMA nachgewiesen werden könnten, so streut es stattdessen die Radiowellen des kosmischen Mikrowellenhintergrundes und erzeugt eine Art Loch rund um den Galaxienhaufen. Dies wird als Sunyaev-Zel'dovich-Effekt bezeichnet.
Das Team beobachtete den Galaxienhaufen RX J1347.5-1145, der 4,8 Milliarden Lichtjahre entfernt ist. Dieser Galaxienhaufen ist bei Astronomen für seinen stark ausgeprägten SZ-Effekt bekannt und wurde schon oft mit Radioteleskopen beobachtet. Diese Beobachtungen zeigten eine ungleichmäßige Verteilung des heißen Gases in diesem Haufen, die in Röntgenbeobachtungen nicht beobachtet werden konnte. Die Astronomen brauchten daher eine höhere Auflösung. Mit hochauflösenden Radiointerferometern konnte diese aber nur schwer erreicht werden, da das heiße Gas im Galaxienhaufen relativ gleichmäßig und über eine große Fläche verteilt ist.
ALMA nutzte das Atacama Compact Array, um diese Schwierigkeit zu überwinden. Diese Installation bietet mit ihren kleinen Antennen und der dicht gepackten Antennenkonfiguration ein breiteres Gesichtsfeld. Mit den Daten des Morita-Array können die Astronomen Radiowellen von Objekten präzise messen, die sich über einen großen Winkel am Himmel erstrecken. So erhielt das Team ein Bild des SZ-Effektes von RX J1347.5-1145 mit einer doppelt so hohen Auflösung und zehnmal besserer Empfindlichkeit als bisherige Beobachtungen.
„Die neue ALMA-Beobachtung bestätigt nicht nur die bisherigen Beobachtungen, sondern liefert uns auch ein Bild mit der höchsten Auflösung und der höchsten Empfindlichkeit. Damit wird eine neue Ära der Wissenschaft mit dem SZ-Effekt eingeläutet“, sagt Eiichiro Komatsu. „Aufgrund der Diskrepanz zwischen den Radio- und den Röntgenbeobachtungen gehen wir inzwischen davon aus, dass dieser Galaxienhaufen gerade eine gewaltige Verschmelzung erlebt, und wir denken, dass einer der Gasklumpen unglaublich heiß ist.“
MPA / JOL