25.03.2008

Künstliche Photosynthese rückt ein Stückchen näher

Künstliche Photosynthese könnte entscheidend zur Lösung von Energie- und Klimaproblemen beitragen. Jülicher Forschern ist jetzt ein wichtiger Schritt auf diesem langen Weg gelungen.



Jülich, 25. März 2008 – Jülicher Forschern ist ein wichtiger Schritt auf dem langen Weg zu einer künstlichen Nachahmung der Photosynthese gelungen. Sie konnten einen stabilen anorganischen Metalloxid-Cluster synthetisieren, der rasch und effektiv die Oxidation von Wasser zu Sauerstoff vermittelt. Das teilt die renommierte Fachzeitschrift „Angewandte Chemie“ in einer als besonders wichtig eingestuften VIP(„Very Important Paper“)-Veröffentlichung mit. Künstliche Photosynthese könnte entscheidend zur Lösung von Energie- und Klimaproblemen beitragen, wenn es gelänge, effizient Wasserstoff mit Hilfe von Sonnenenergie zu produzieren.

Wasserstoff wird als der Energieträger der Zukunft gehandelt, zum Beispiel in der Automobilbranche, die an der Einführung der Brennstoffzellentechnologie ab etwa 2010 arbeitet. Wirklich umweltschonend wird ein Brennstoffzellenantrieb aber nur dann sein, wenn es gelingt, den Wasserstoff mithilfe regenerativer Verfahren herzustellen. Die künstliche Photosynthese, das heißt die Spaltung von Wasser in Sauerstoff und Wasserstoff mithilfe von Sonnenlicht, wäre eine elegante Lösung für dieses Problem.

Doch der Weg dorthin ist steinig. Ein Problem: Die Entstehung aggressiver Substanzen im Verlauf der Wasseroxidation. Pflanzen lösen dieses Problem, indem sie für konstante Reparatur und Ersatz ihrer grünen Katalysatoren sorgen. Ein technischer Nachbau ist auf stabilere Katalysatoren angewiesen, wie sie nun erstmals von einem Team des Forschungszentrums Jülich, Mitglied der Helmholtz-Gemeinschaft, und der Emory University in Atlanta, USA, synthetisiert und untersucht wurden. Der neue anorganische Metalloxid-Cluster mit vier Ionen des seltenen Übergangsmetalls Ruthenium im Zentrum katalysiert die rasche und effektive Oxidation von Wasser zu Sauerstoff und bleibt dabei selbst stabil.

„Unser wasserlöslicher Tetra-Ruthenium-Komplex entfaltet seine Wirkung in wässriger Lösung schon bei Raumtemperatur“, freut sich Prof. Paul Kögerler vom Jülicher Institut für Festkörperforschung, der den vielversprechenden Cluster zusammen mit seinem Kollegen Dr. Bogdan Botar synthetisiert und charakterisiert hat. An der Emory University wurden die katalytischen Messungen durchgeführt. „Anders als andere molekulare Katalysatoren für die Wasseroxidation besitzt unser Katalysator keine organischen Bestandteile. Das macht ihn so stabil“.

Botar erläutert den nächsten Schritt: „Jetzt besteht die Herausforderung in der Integration dieses Ruthenium-Komplexes in photoaktive Systeme, die Sonnenenergie in chemische Energie umsetzen“. Bisher stammt die Energie nämlich noch aus einem chemischen Oxidationsmittel.

Quelle: Pressemitteilung Forschungszentrum Jülich GmbH

Weitere Infos:

  • Originalveröffentlichung:
    Yurii V. Geletii, Bogdan Botar, Paul Kögerler, Daniel A. Hillesheim, Djamaladdin G. Musaev, and Craig L. Hill; An All-Inorganic, Stable, and Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation;
    Angewandte Chemie, DOI: 10.1002/ange.200705652.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen