06.12.2013

Laserlicht aus Halbleiter-Nanodrähten

Nanodrahtlaser könnten mit Siliziumchips, Lichtwellenleitern und sogar lebenden Zellen arbeiten.

Nanodrähte sind fadenähnliche Halbleiterstrukturen, so dünn, dass sie praktisch eindimensional sind. Sie könnten eines Tages als Laser für Anwendungen in der Computer- und Kommunikationstechnik sowie der Sensorik dienen. Wissenschaftler der TU München konnten Laseraktivität an Halbleiter-Nanodrähten demonstrieren, die bei Raumtemperatur Licht bei technisch brauchbaren Wellenlängen emittieren. Jetzt dokumentierten die Forscher diesen Durchbruch und veröffentlichten weitergehende Ergebnisse über verbesserte optische und elektronische Leistungen des Systems.

Abb.: Nanodrähte (Bild: TUM)


„Nanodrahtlaser könnten der nächste Schritt in der Entwicklung von kleineren, schnelleren und energieeffizienteren Lichtquellen sein“, sagt Prof. Jonathan Finley, Direktor des Walter-Schottky-Instituts der TUM. Zu den möglichen Anwendungen zählen optische Verschaltungen auf Chips oder gar optische Transistoren zur Beschleunigung von Rechnern, integrierte Optoelektronik für Glasfaser-Kommunikation und Laser-Arrays mit lenkbarem Strahl. „Nanodrähte sind aber auch etwas Besonderes“, fügt Finley hinzu, „denn sie reagieren sehr empfindlich auf ihre Umgebung, haben im Verhältnis zu ihrem Volumen eine große Oberfläche und sind so klein, dass sie beispielsweise in biologische Zellen eindringen können“. Deshalb könnten Nanodrahtlaser auch in der Umwelt- und Biosensorik Anwendung finden. Im Labor emittieren die Nanodrahtlaser Licht bei Wellenlängen im nahen Infrarot und kommen damit dem Optimum für Glasfaser-Kommunikation sehr nahe. Sie können direkt auf Silizium gezüchtet werden und bieten deshalb Möglichkeiten für integrierte Photonik und Optoelektronik. Und sie funktionieren bei Raumtemperatur, was für die praktische Anwendung unabdingbar ist.

So winzig die an der TUM demonstrierten Nanodrahtlaser auch sein mögen – sie sind hundert- bis tausendmal dünner als ein Menschenhaar – so bilden sie dennoch eine sehr komplexe Struktur („core-shell“), deren Profil aus unterschiedlichen Halbleitermaterialien buchstäblich Atom für Atom aufgebaut wird. Aufgrund ihrer maßgeschneiderten core-shell-Strukturen können die Nanodrähte einerseits als Laser kohärente Lichtimpulse generieren und andererseits als Wellenleiter ähnlich wie Glasfasern arbeiten. Wie herkömmliche Kommunikationslaser werden diese Nanodrähte aus III-V-Halbleitermaterial hergestellt. Dieses  hat die passende Bandlücke, um Licht im nahen Infrarot zu emittieren. Der entscheidender Vorteil liegt in der Geometrie der Nanodrähte, die „wesentlich weniger anfällig auf Kristallgitterfehler wie bei sonst üblichen Dünnschichtprozessen ist, und so die Verbindung von Materialien zulässt, die normalerweise nicht kombiniert werden können“, so Finley. Weil Nanodrähte einen Durchmesser von nur ein paar Dutzenden bis Hunderten von Nanometer aufweisen, können sie weitestgehend fehlerfrei direkt auf Siliziumchips anwachsen, und somit höchste Materialgüte sowie potenziell sehr hohe Leistungsfähigkeit aufweisen.

In ihrer Gesamtheit eröffnen diese Eigenschaften einen Weg von der angewandten Forschung hin zu verschiedensten künftigen Anwendungen. Auf die Wissenschaftler warten allerdings noch einige Herausforderungen. Beispielsweise wurde die erzeugte Laseremission der TUM-Nanodrähte durch Licht stimuliert – ebenso wie die Nanodrähte, über die fast zeitgleich ein Team der Australian National University berichtete. In der praktischen Anwendung müssen die Nanodrähte allerdings eher elektrisch angeregt werden.

Abb.: Doktoranden Daniel Rudolph (links) und Benedikt Mayer im Labor. (Bild: A. Heddergott/TUM)

Ziel der laufenden Forschung ist ein besseres Verständnis der in diesen Komponenten auftretenden physikalischen Phänomene sowie die Entwicklung elektrisch gepumpter Nanodrahtlaser, die Optimierung ihrer Leistung und ihre Integration in die Siliziumphotonik. „Zur Zeit gibt es nur sehr wenige Laboratorien, die Nanodrahtmaterial und -komponenten mit der erforderlichen Präzision erzeugen können“, sagt Emeritus Gerhard Abstreiter, Gründer des Walter-Schottky-Instituts und Direktor des TUM-Institute for Advanced Study. „Doch“, so fährt er fort, „unsere Verfahren und Designs sind mit den industriellen Produktionsmethoden für Computer- und Kommunikationstechnologie kompatibel. Die Erfahrung hat gelehrt, dass die bahnbrechenden Experimente von heute in kommerziell verwertbaren Techniken von morgen münden können und dies oft auch tun“.

TUM / CT

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen