Licht an – Molekül an
Der molekularen Elektronik gelingt das lichtgesteuerte Anschalten einer Diarylethen-Verbindung.
Die molekulare Elektronik wird zukünftig ein Fenster hin zu neuartigen und immer noch kleineren und zugleich energieeffizienten Bauelementen oder Sensoren aufstoßen, davon ist Artur Erbe, Physiker am HZDR, überzeugt: „Einzelne Moleküle sind die kleinsten, zu einem Prozessor integrierbaren Bausteine, die wir uns derzeit vorstellen können.“ Bis heute jedoch ist es noch nicht gelungen, ein Molekül so maßzuschneidern, dass es Strom leiten kann und dass sich der Strom – wie bei einem elektrischen Schalter – gezielt ein- und wieder ausschalten lässt.
Abb.: Ein Lichtstrahl schaltet erstmals ein einzelnes Molekül in einen geschlossenen Zustand (rote Atome) und es kann Strom fließen. (Bild: HZDR / Pfefferkorn)
Dazu bedarf es eines elektrisch leitenden Moleküls, bei dem sich an einer Stelle eine ansonsten feste Bindung zwischen einzelnen Atomen löst – und genau dann wieder schließt, wenn Energie in die Struktur gepumpt wird. In aufwendigen Versuchen hat der Chemiker Jannic Wolf an der Universität Konstanz herausgefunden, dass eine bestimmte Diarylethen-Verbindung als Kandidat in Frage kommt. Die Vorteile des rund drei Nanometer langen Moleküls: Es verdreht sich nur wenig, wenn es seine Struktur an einem Punkt öffnet, und es verfügt über zwei Nano-Drähte, die zur Kontaktierung verwendet werden können. Dass es in offenem Zustand keinen Strom leitet, während es in geschlossenem Zustand zum Leiter wird und deshalb ein anderes physikalisches Verhalten zeigt, konnten die Wissenschaftler aus Konstanz und Dresden bei vielen reproduzierbaren Messungen erstmals für ein einzelnes Molekül sicher nachweisen.
Eine Besonderheit dieser molekularen Elektronik: Sie findet in einer Flüssigkeit im Reagenzglas statt, denn die Moleküle werden in Lösung kontaktiert. Um herauszufinden, welche Auswirkungen die Lösungsbedingungen für die Schaltprozesse haben, war deshalb auch ein systematisches Ausprobieren verschiedener Lösungsmittel nötig. Damit Strom fließen kann, muss das Diarylethen an den Enden der Nano-Drähte an Elektroden angeschlossen werden. „Wir haben dafür am HZDR eine Nano-Technologie entwickelt, die auf hauchdünne Spitzen aus nur wenigen Gold-Atomen setzt. Dazwischen spannen wir die schaltbare Diarylethen-Verbindung“, erklärt Erbe.
Trifft nun ein Lichtstrahl auf das Molekül, so schaltet es vom geöffneten in den geschlossenen Zustand mit der Folge, dass Strom fließt. „Wir konnten so erstmalig ein einzelnes kontaktiertes Molekül anschalten und zudem den Nachweis erbringen, dass genau das Molekül zum Stromleiter wird, das wir bestrahlt haben“, freut sich Erbe. „Zudem haben wir den molekularen Schaltmechanismus sehr detailliert charakterisiert, weshalb ich glaube, dass uns damit ein wichtiger Schritt hin zu einem echten molekularen Elektronik-Bauteil geglückt ist.“
Das Ausschalten klappt beim kontaktierten Diarylethen allerdings noch nicht, doch Erbe ist zuversichtlich: „Unsere Theorie-Kollegen am HZDR berechnen gerade, wie genau sich das Molekül verdrehen muss, damit der Stromfluss unterbrochen wird. Gemeinsam mit den Konstanzer Chemikern werden wir in der Lage sein, das Design und die Synthese für das Molekül entsprechend umzusetzen.“ Allerdings handelt es sich hierbei um Grundlagenforschung, die viel Geduld erfordert: Alleine die Kontaktierung des Diarylethen-Moleküls mittels Elektronenstrahl-Lithographie und die anschließenden Messungen dauerten drei Jahre. Bereits vor rund zehn Jahren war es einer Arbeitsgruppe an der Universität Groningen gelungen, einen molekularen Schalter zu bauen, der in der Lage war, den Stromfluss zu unterbrechen. Auch dieser Aus-Schalter funktionierte nur in einer Richtung, doch konnte damals nicht sicher nachgewiesen werden, dass die Leitfähigkeitsänderung an genau ein Molekül gebunden war.
Ein Schwerpunkt der Forschungsarbeiten in Dresden ist die Selbstorganisation. „DNA-Moleküle etwa sind in der Lage, sich ohne Zutun von außen selbst zu Strukturen anzuordnen. „Wenn es uns gelingt, logische Schalter aus sich selbst organisierenden Molekülen zu bauen, dann kommt der Rechner der Zukunft aus dem Reagenzglas“, prophezeit Erbe. Die Riesenvorteile dieser neuen Technologie liegen auf der Hand: Milliarden teure Fertigungsanlagen, wie sie für die Mikroelektronik von heute benötigt werden, könnten dann der Vergangenheit angehören. Doch nicht nur für die Produktion, sondern auch für den Betrieb neuartiger molekularer Bauteile wird extrem wenig Energie benötigt.
HZDR / OD