Magnetfeld am Rand eines schwarzen Lochs
Zentrum der Galaxie Messier 87 zeigt Signatur in polarisiertem Licht.
Wissenschaftler des Event Horizon Telescope haben 2019 das erste Bild eines schwarzen Lochs erstellt. Heute präsentieren die Forscher einen neuen Blick auf das gewaltige Objekt im Zentrum der Galaxie Messier 87: sein Aussehen in polarisiertem Licht. Erstmals konnten Astronomen die Polarisation, eine Signatur von Magnetfeldern, so nah am Rande eines schwarzen Lochs messen. Die Beobachtungen sind der Schlüssel zur Erklärung, wie die 55 Millionen Lichtjahre entfernte Galaxie M87 in der Lage ist, energetische Jets von ihrem Kern auszustoßen. Diese Jets erreichen eine Ausdehnung von rund einer Million Lichtjahre.
„Welche Kräfte relativistische Jets in Galaxien antreiben ist eine Frage, die seit langem in der Astrophysik diskutiert wird. Die Jets in M87 sind enorm und würden zehn Prozent unserer Galaxie bedecken. Durch die anspruchsvollen Beobachtungen des Event Horizon Teleskops, kombiniert mit den theoretischen Modellrechnungen, die wir hier in Frankfurt gemacht haben, erhalten wir wesentliche Informationen über einen vergleichsweise kleinen Bereich: Erstmals sehen wir, wie das Magnetfeld sehr nahe um das schwarze Loch herum aussieht“, sagt ;Luciano Rezzolla von der Goethe-Universität Frankfurt. „Wir sehen jetzt das nächste entscheidende Puzzleteil für das Verständnis, wie sich Magnetfelder um schwarze Löcher herum verhalten und wie die Aktivität in diesen sehr kompakten Regionen des Weltraums starke Jets antreiben kann, die sich weit über die Galaxie hinaus erstrecken“, sagt Monika Moscibrodzka, Koordinatorin der EHT Polarimetrie-Arbeitsgruppe von der Radboud Universität in den Niederlanden.
Am 10. April 2019 veröffentlichten die Wissenschaftler das allererste Bild eines schwarzen Lochs, das eine helle ringförmige Struktur mit einer dunklen zentralen Region – dem Schatten des schwarzen Lochs – zeigt. Seitdem hat sich die EHT-Kollaboration eingehender mit den 2017 gesammelten Daten vom supermassereichen Objekt im Herzen der Galaxie M87 beschäftigt. Sie haben entdeckt, dass ein signifikanter Anteil des Lichts um das schwarze Loch von M87 polarisiert ist. „Diese Arbeit ist ein wichtiger Meilenstein: Die Polarisation des Lichts birgt Informationen, die es uns erlauben, die Physik hinter dem Bild, das wir im April 2019 gesehen haben, besser zu verstehen. Das war vorher nicht möglich“, sagt Iván Martí-Vidal von der Universität von Valencia.
Genauso wie polarisierte Sonnenbrillen uns helfen, besser zu sehen, indem sie Reflexionen und Blendungen von hellen Oberflächen reduzieren, können Astronomen ihren Blick auf die Region um das schwarze Loch schärfen, indem sie sich ansehen, wie das von ihm ausgehende Licht polarisiert ist. Insbesondere erlaubt die Polarisation den Astronomen, die Magnetfeldlinien zu kartieren, die am inneren Rand des schwarzen Lochs vorhanden sind. ;„Die Bilder sind der Schlüssel zum Verständnis, wie das Magnetfeld es dem schwarzen Loch ermöglicht, Materie zu verschlingen“, sagt EHT-Kollaborationsmitglied Andrew Chae vom Princeton Center for Theoretical Science.
Die hellen Energie- und Materiejets, die aus dem Kern von M87 entspringen und sich mindestens über 5000 Lichtjahre von seinem Zentrum ausbreiten, sind eines der geheimnisvollsten und energiereichsten Merkmale der Galaxie. Die meiste Materie, die sich in der Nähe des Randes eines schwarzen Lochs befindet, fällt hinein. Einige der umgebenden Teilchen entkommen jedoch kurz vor dem Einfangen und werden in Form von Jets weit ins All hinausgeschleudert. Um diesen Prozess besser zu verstehen, haben sich Astronomen auf verschiedene Modelle gestützt, wie sich Materie in der Nähe des schwarzen Lochs verhält. Aber sie wissen immer noch nicht genau, wie die Jets, die größer als die Galaxie sind, aus seiner zentralen Region ausgestoßen werden, die von ihrer Ausdehnung her mit dem Sonnensystem vergleichbar ist, noch wie genau die Materie in das schwarze Loch fällt.
Mit der neuen EHT-Aufnahme des schwarzen Lochs und seines Schattens in polarisiertem Licht ist es erstmals gelungen, in die Region dicht außerhalb des schwarzen Lochs zu blicken, in der dieses Wechselspiel zwischen einströmender und herausgeschleuderter Materie stattfindet. Die Beobachtungen liefern neue Informationen über die Struktur der Magnetfelder direkt außerhalb des schwarzen Lochs. Das Team fand heraus, dass nur theoretische Modelle mit stark magnetisiertem Gas erklären können, was sie am Ereignishorizont sehen. „Die Beobachtungen legen nahe, dass die Magnetfelder am Rand des schwarzen Lochs stark genug sind, um das heiße Gas zurückzudrängen und es dabei zu unterstützen, der Schwerkraft zu widerstehen. Nur das Gas, das durch das Feld schlüpft, kann sich spiralförmig nach innen zum Ereignishorizont bewegen“, erklärt Jason Dexter von der University of Colorado in Boulder.
Um das Herz der Galaxie M87 zu beobachten, verbanden die Forscher acht Teleskope auf der ganzen Welt, um mit dem EHT ein virtuelles erdumspannendes Teleskop zu schaffen. Die beeindruckende Auflösung entspricht der, die benötigt wird, um die Länge einer Kreditkarte auf der Oberfläche des Mondes zu messen. Mit der Anordnung des EHT konnte das Team den Schatten des schwarzen Lochs und den ihn umgebenden Lichtring direkt beobachten, wobei das neue Bild mit polarisiertem Licht deutlich zeigt, dass der Ring magnetisiert ist. „Das EHT macht rasante Fortschritte, das Netzwerk wird technologisch aufgerüstet und neue Observatorien werden hinzugefügt. Wir erwarten, dass zukünftige EHT-Beobachtungen die Magnetfeldstruktur um das schwarze Loch genauer abbilden und uns mehr über die Physik des heißen Gases in dieser Region verraten werden“, sagt EHT-Kollaborationsmitglied Jongho Park vom Academia Sinica Institute of Astronomy and Astrophysics in Taipeh.
U. Frankfurt / JOL
Weitere Infos
- Originalveröffentlichung
EHT Collaboration et al.: First M87 Event Horizon Telescope Results. VII. Polarization of the Ring, Astrophys. J. Lett. 910, L12 (2021); DOI: 10.3847/2041-8213/abe71d - EHT Collaboration et al.: First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon, Astrophys. J. Lett. 910, L13 (2021); DOI: 10.3847/2041-8213/abe4de
- Event Horizon Telescope EHT
Weitere Beiträge
- H. Falcke, Die Welt ist nicht genug (Physik in unserer Zeit, 9. November 2020)
- A. Eichhorn, Ins Schwarze gesehen (Physik Journal, Juni 2019, Seite 18)