31.08.2023 • Materialwissenschaften

Materialdesign per KI

Neues maschinelles Lernmodell für korrosionsresistente Legierungen entwickelt.

Etwa 2,5 Billionen US-Dollar jährlich – so hoch ist der wirtschaft­liche Schaden, der weltweit durch Korrosion verursacht wird. Wissenschaft und Industrie suchen daher nach neuen Legierungen, die korrosions­resistent sind, und nach Beschichtungen, die Legierungen vor Korrosion schützen. Bei der Suche wird immer häufiger künstliche Intelligenz angewendet, um das Korrosions­verhalten von Materialien vorher­zusagen und so optimale Legierungs­zusammen­setzungen zu finden. Allerdings ist die Vorher­sage­kraft bisheriger KI-Modelle begrenzt, da nicht alle relevanten Daten in Betracht gezogen werden können. Wissen­schaftler des MPI für Eisen­forschung haben jetzt ein neues maschinelles Lernmodell entwickelt, das korrosives Versagen um 15 Prozent genauer vorher­sagen kann als bisherige Modelle und neue resistente Legierungen vorschlägt. Ursprünglich für den kritischen Bereich der Loch­fraß­korrosion in hochfesten Legierungen entwickelt, lässt sich das Modell auf alle Legierungs­eigen­schaften ausweiten.

Abb.: Schematische Dar­stel­lung des neuro­nalen Lern­modells (a) und...
Abb.: Schematische Dar­stel­lung des neuro­nalen Lern­modells (a) und schema­tische Dar­stel­lung der Daten­ver­arbei­tung mit Hilfe natür­licher Sprach­ver­arbei­tung (b). LSTM steht für „long short-term memory“, also langes Kurz­zeit­ge­dächt­nis. Bild: K. N. Sasidhar et al. / AAAS)

„Die Korrosions­resistenz jeder Legierung hängt von ihrer Zusammen­setzung und ihrer Herstellung und Verarbeitung ab. Allerdings konnten bisherige KI-Modelle nur die Zusammen­setzung basierend auf numerischen Daten verarbeiten. Da die Herstellung und Verarbeitung der Legierung aber textlich dokumentiert werden, flossen diese Daten nicht in KI-Modelle ein. Deswegen war die Aussagekraft bisheriger KI-Modelle eingeschränkt“, erklärt Kasturi Narasimha Sasidhar vom MPIE.

Das Forscherteam nutzt Sprach­ver­arbei­tungs­methoden, ähnlich wie ChatGPT, und kombiniert diese mit maschinellem Lernen. So konnten die Wissenschaftler ein maschinelles Lernmodell entwickeln, das numerische Daten und natürliche Sprache voll­auto­matisch verarbeitet und nun besser vorher­sagen kann, wie Legierungen sich bei Korrosion verhalten beziehungs­weise welche Legierungen korrosions­resistent sind.

„Am Anfang haben wir das Lernmodell mit Daten über Korrosions­eigen­schaften und Legierungs­zusammen­setzung trainiert. Jetzt ist das Modell selbstständig in der Lage korrosions­resistente Legierungen zu erkennen, selbst wenn die einzelnen Elemente ursprünglich nicht in das Modell eingegeben wurden“, sagt Michael Rohwerder vom MPIE.

Bisher basiert das KI-Modell auf manuell gesammelten Daten der Wissen­schaftler. Ihr Ziel besteht jetzt darin, den Prozess des Data Mining zu auto­mati­sieren und nahtlos in ihr Modell zu integrieren. Zudem soll das Modell auch auf Mikro­skopie­bilder erweitert werden, damit alle relevanten Informa­tions­quellen, Text, Zahlen und Bilder, in das KI-Modell einfließen und so die Aussage­kraft weiter erhöhen.

MPIE / RK

Weitere Infos

 

 

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen