Materialdesign per KI
Neues maschinelles Lernmodell für korrosionsresistente Legierungen entwickelt.
Etwa 2,5 Billionen US-Dollar jährlich – so hoch ist der wirtschaftliche Schaden, der weltweit durch Korrosion verursacht wird. Wissenschaft und Industrie suchen daher nach neuen Legierungen, die korrosionsresistent sind, und nach Beschichtungen, die Legierungen vor Korrosion schützen. Bei der Suche wird immer häufiger künstliche Intelligenz angewendet, um das Korrosionsverhalten von Materialien vorherzusagen und so optimale Legierungszusammensetzungen zu finden. Allerdings ist die Vorhersagekraft bisheriger KI-Modelle begrenzt, da nicht alle relevanten Daten in Betracht gezogen werden können. Wissenschaftler des MPI für Eisenforschung haben jetzt ein neues maschinelles Lernmodell entwickelt, das korrosives Versagen um 15 Prozent genauer vorhersagen kann als bisherige Modelle und neue resistente Legierungen vorschlägt. Ursprünglich für den kritischen Bereich der Lochfraßkorrosion in hochfesten Legierungen entwickelt, lässt sich das Modell auf alle Legierungseigenschaften ausweiten.
„Die Korrosionsresistenz jeder Legierung hängt von ihrer Zusammensetzung und ihrer Herstellung und Verarbeitung ab. Allerdings konnten bisherige KI-Modelle nur die Zusammensetzung basierend auf numerischen Daten verarbeiten. Da die Herstellung und Verarbeitung der Legierung aber textlich dokumentiert werden, flossen diese Daten nicht in KI-Modelle ein. Deswegen war die Aussagekraft bisheriger KI-Modelle eingeschränkt“, erklärt Kasturi Narasimha Sasidhar vom MPIE.
Das Forscherteam nutzt Sprachverarbeitungsmethoden, ähnlich wie ChatGPT, und kombiniert diese mit maschinellem Lernen. So konnten die Wissenschaftler ein maschinelles Lernmodell entwickeln, das numerische Daten und natürliche Sprache vollautomatisch verarbeitet und nun besser vorhersagen kann, wie Legierungen sich bei Korrosion verhalten beziehungsweise welche Legierungen korrosionsresistent sind.
„Am Anfang haben wir das Lernmodell mit Daten über Korrosionseigenschaften und Legierungszusammensetzung trainiert. Jetzt ist das Modell selbstständig in der Lage korrosionsresistente Legierungen zu erkennen, selbst wenn die einzelnen Elemente ursprünglich nicht in das Modell eingegeben wurden“, sagt Michael Rohwerder vom MPIE.
Bisher basiert das KI-Modell auf manuell gesammelten Daten der Wissenschaftler. Ihr Ziel besteht jetzt darin, den Prozess des Data Mining zu automatisieren und nahtlos in ihr Modell zu integrieren. Zudem soll das Modell auch auf Mikroskopiebilder erweitert werden, damit alle relevanten Informationsquellen, Text, Zahlen und Bilder, in das KI-Modell einfließen und so die Aussagekraft weiter erhöhen.
MPIE / RK
Weitere Infos
- Originalveröffentlichung
K.N. Sasidhar et al.: Enhancing corrosion resistant alloy design through natural language processing and deep learning, Sci. Adv. 9, eadg7992 (2023); DOI: 10.1126/sciadv.adg7992 - Korrosion (M. Rohwerder), Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf