Materialforschung verbessert Hüftimplantate

Hochauflösende Mikroskopie zeigen Entstehung eines Reliefs auf der Oberfläche der Titanlegierung.

Insgesamt 1,8 Millionen Hüftoperationen wurden 2015 in den Industrie­ländern durchgeführt. Aufgrund der höheren Lebens­erwartung wird die Zahl der Hüft­endo­prothesen schätzungs­weise auf 2,8 Millionen bis 2050 ansteigen. Ende des letzten Jahr­tausends hielten künst­liche Hüft­prothesen nur etwa zehn Jahre. Seitdem haben sich Mediziner verstärkt mit Material­wissen­schaftlern zusammen­getan, um länger haltbare Implantate zu produzieren. Das Ziel: Revisions­operationen nach der Implantation vermeiden. Die Forscher befassen sich unter anderem mit der Freisetzung von winzig kleinen Metall­partikeln und Ionen aus dem Implantat in das umgebende Gewebe, ein Prozess, der durch kombinierte Mikro­bewegungen und Korrosion zwischen den modularen Teilen der künst­lichen Hüfte beschleunigt wird.

Abb.: Der kobalthaltige Hüftkopf kann sich an der Verbindungstelle zum...
Abb.: Der kobalthaltige Hüftkopf kann sich an der Verbindungstelle zum Hüftschaft aus einer Titanlegierung durch Reibung abbauen. Mittels Atomsondentomographie analysierte das Team den Reibungsprozess. (Bild: S. Balachandran et al. / Wiley-VCH)

Um die zugrundeliegenden Mechanismen auf atomarer Ebene zu identifi­zieren, analysierten Michael Herbig vom MPI für Eisen­forschung und sein Team Kobalt- und Titan­legierungen, die in Hüft­implantaten verwendet werden. In Zusammen­arbeit mit Alfons Fischer und Markus Wimmer vom Rush University Medical Center in den USA modellierten die Wissen­schaftler die Belastungen und die Umgebung des Hüft­gelenks experi­mentell im Labor.

Hüftimplantate bestehen oft aus einem kobalt­haltigen Gelenk­kopf, der auf einem Schaft aus einer Titan­legierung befestigt ist. Kombinierte Reibung und Korrosion an der Verbindungs­stelle von Kopf und Schaft führen zur Frei­setzung von Metall­partikeln und Ionen in den Körper des Patienten. Das umliegende Gewebe wird gereizt, was eine Revisions­operation des Implantats erforder­lich machen kann.

Mit Hilfe hochauflösender Mikroskopie­techniken konnten die Forscher zeigen, dass die Reibung zwischen Ober­schenkel­kopf und -schaft zu einem Relief auf der Ober­fläche der Titan­legierung führt. „Die Uneben­heiten ragen aus der Ober­flächen der Titan­legierung heraus und verkratzen die gegen­über­liegende Ober­fläche der Kobalt­legierung. Dadurch wird deren natür­liche Schutz­schicht verletzt und es kommt zur weiteren Korrosion des Kobalt­kopfes. Und das wiederum führt zur Frei­setzung von Metall­ionen“, erklärt Herbig. Aber wie kann dieser Prozess gehemmt werden und wie beein­flussen die in der Gelenk­flüssig­keit vorhandenen Proteine die Auflösung der Legierungen? Die Beantwortung dieser Fragen wäre, so die Wissen­schaftler, der nächste Schritt, um den Weg für die Entwicklung tribo­korrosions­beständiger Legierungen für medizinische Anwendungen zu ebnen.

MPIE / RK

Weitere Infos

 

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen