Mehr Strom aus Abwärme
Thermomagnetische Generatoren wandeln Abwärme bei kleinen Temperaturunterschieden in Strom.
Viele technische Prozesse nutzen die für sie eingesetzte Energie nur zum Teil; der Rest verlässt das System als Abwärme. Häufig entweicht diese Wärme ungenutzt in die Umgebung. Sie lässt sich jedoch auch zur Wärmebereitstellung oder zur Stromerzeugung verwenden. Je höher die Temperatur der Abwärme, desto einfacher und kostengünstiger ihre Verwertung. Eine Möglichkeit, niedrig temperierte Abwärme zu nutzen, bieten thermoelektrische Generatoren, welche die Wärme direkt in Strom wandeln. Bisher verwendete thermoelektrische Materialien sind allerdings teuer und teilweise toxisch. Thermoelektrische Generatoren erfordern zudem große Temperaturdifferenzen für Wirkungsgrade von nur wenigen Prozent. Eine vielversprechende Alternative stellen thermomagnetische Generatoren dar.
Diese Minikraftwerke basieren auf Legierungen, deren magnetische Eigenschaften stark temperaturabhängig sind. Die wechselnde Magnetisierung induziert in einer angelegten Spule eine elektrische Spannung. Bereits im 19. Jahrhundert stellten Forscher die ersten Konzepte für thermomagnetische Generatoren vor. Seitdem hat die Forschung mit verschiedenen Materialien experimentiert. Die elektrische Leistung ließ bisher allerdings zu wünschen übrig. Wissenschaftlern am Institut für Mikrostrukturtechnik (IMT) des Karlsruher Institut für Technologie sowie von der Universität Tōhoku in Japan ist es nun gelungen, die elektrische Leistung von thermomagnetischen Generatoren im Verhältnis zur Grundfläche erheblich zu steigern. „Mit den Ergebnissen unserer Arbeit können thermomagnetische Generatoren erstmals mit etablierten thermoelektrischen Generatoren konkurrieren. Wir sind damit dem Ziel, Abwärme bei kleinen Temperaturunterschieden in Strom zu wandeln, wesentlich näher gekommen“, sagt Manfred Kohl, Leiter der Forschungsgruppe Smart Materials and Devices am KIT.
Heusler-Legierungen – magnetische intermetallische Verbindungen – ermöglichen als Dünnschichten in thermomagnetischen Generatoren eine große temperaturabhängige Änderung der Magnetisierung und eine schnelle Wärmeübertragung. Auf dieser Grundlage basiert das neuartige Konzept der resonanten Selbstaktuierung. Selbst bei geringen Temperaturunterschieden lassen sich die Bauelemente zu resonanten Schwingungen anregen, die effizient in Strom gewandelt werden können. Doch die elektrische Leistung einzelner Bauelemente ist gering, und bei der Hochskalierung kommt es vor allem auf Materialentwicklung und Bauweise an.
Die Forscher stellten in ihrer Arbeit anhand einer Nickel-Mangan-Gallium-Legierung fest, dass die Dicke der Legierungsschicht und die Grundfläche des Bauelements die elektrische Leistung in entgegengesetzter Richtung beeinflussen. Aufgrund dieser Erkenntnis gelang es ihnen, die elektrische Leistung im Verhältnis zur Grundfläche um den Faktor 3,4 zu steigern, indem sie die Dicke der Legierungsschicht von fünf auf vierzig Mikrometer erhöhten. Die thermomagnetischen Generatoren erreichten eine maximale elektrische Leistung von fünfzig Mikrowatt pro Quadratzentimeter bei einer Temperaturänderung von nur drei Grad Celsius. „Diese Ergebnisse ebnen den Weg zur Entwicklung maßgeschneiderter parallel geschalteter thermomagnetischer Generatoren, die das Potenzial zur Abwärmenutzung nahe Raumtemperatur besitzen“, erklärt Kohl.
KIT / JOL
Weitere Infos
- Originalveröffentlichung
J. Joseph et al.: Upscaling of Thermomagnetic Generators Based on Heusler Alloy Films, Joule 4, 2718 (2020); DOI: 10.1016/j.joule.2020.10.019 - Smart Materials and Devices (M. Kohl), Institut für Mikrostrukturtechnik, Karlsruhe Institut für Technologie KIT, Karlsruhe