Meteoriteneinschlag im Labor
Experimente zeigen Strukturänderung von Mineralien durch schnelle Kompression.
Ein deutsch-amerikanisches Forschungsteam hat Meteoriteneinschläge im Labor simuliert und die resultierenden Strukturänderungen in zwei weit verbreiteten Feldspat-Mineralien live mit Hilfe von Röntgenlicht verfolgt. Die Ergebnisse der Experimente bei DESY und am Argonne National Laboratory in den USA zeigen, dass diese Änderungen der atomaren Struktur je nach Kompressionsrate bei sehr unterschiedlichem Druck auftreten können. Sie haben eine Bedeutung für die Rekonstruktion von Meteoriteneinschlägen anhand von Einschlagkratern auf der Erde und auf anderen erdähnlichen Planeten.
Meteoriteneinschläge spielen eine wichtige Rolle bei der Entstehung und Entwicklung der Erde und anderer Himmelskörper in unserem Sonnensystem. Einschlagkrater können auch nach Hunderten bis Millionen Jahren noch Rückschlüsse auf Größe und Geschwindigkeit des jeweiligen Meteoriten sowie auf Druck und Temperatur während seines Einschlags erlauben. Forscher untersuchen dazu per Röntgenkristallographie Änderungen in der inneren Struktur des Kratermaterials und vergleichen die Beobachtungen mit Ergebnissen von Hochdruckexperimenten mit demselben Material im Labor. Auf diese Weise hat sich in den vergangenen Jahrzehnten ein Klassifizierungssystem etabliert, in dem unter anderem die in der planetaren Kruste weit verbreiteten Feldspat-Mineralien Albit, Anorthit und ihre Mischtypen der Plagioklas-Serie untersucht werden. Dabei dient insbesondere die Amorphisierung als Indikator, also der Verlust der geordneten Kristallstruktur. Allerdings hat sich gezeigt, dass diese Amorphisierung bei ganz unterschiedlichem Druck stattfinden kann, je nachdem, wie schnell das Material komprimiert wird.
„Diese Differenzen zeigen die großen Lücken, die noch in unserem Verständnis von kompressionsabhängigen Prozessen in Mineralien klaffen“, erläutert Forschungsleiter Lars Ehm von der Stony-Brook-Universität in New York und dem Brookhaven National Laboratory. Dieser Wissensmangel hat weitreichende Konsequenzen für die Analyse von Meteoritenkratern, aus der sich etwa Größe, Geschwindigkeit und anderen Eigenschaften des auslösenden Meteoriten nicht so genau ableiten lässt wie gewünscht. Um diese Wissenslücken weiter zu schließen, haben die Forscher um Ehm jetzt Feldspat-Proben im Labor unterschiedlich schnell zusammengepresst und dabei verfolgt, wann die Amorphisierung einsetzt. Dazu spannten sie Mikroproben in dynamische Stempelzellen ein, deren winzige Diamantstempel sich beispielsweise mit kleinen Piezo-Aktuatoren rasch, aber kontrolliert zusammendrücken lassen. Um die Veränderungen der Kristallstruktur live verfolgen zu können, nutzte das Team unter anderem DESYs hochbrillante Röntgenlichtquelle PETRA III. Dabei kam ein empfindlicher und schneller Spezialdetektor zum Einsatz.
Das charakteristische Beugungsmuster erlaubt eine atomgenaue Berechnung der inneren Struktur der Probe. Um schnelle Veränderungen beobachten zu können, sind eine kurze Belichtungszeit und ein entsprechend heller Röntgenstrahl nötig. „Dank neuer und sehr leistungsfähiger Röntgenquellen wie DESYs PETRA III, der Advanced Photon Source am Argonne National Lab oder dem europäischen Röntgenlaser European XFEL sowie großen Fortschritten in der Röntgendetektortechnik verfügen wir jetzt über die nötigen Werkzeuge, um die atomare Struktur von Materialien während schneller Kompression zu messen“, erläutert Desy-Forscher Hanns-Peter Liermann. Die Proben wurden auf einen Druck von bis zu achtzig Gigapascal zusammengepresst. „In unseren Experimenten haben wir Gasdruck- und Aktuator-gesteuerte Diamantstempelzellen verwendet, um die Proben schnell zusammenzudrücken, während wir fortlaufend Röntgenbeugungsmuster aufgezeichnet haben“, sagt Melissa Sims von der Stony-Brook-Universität. „Das hat uns ermöglicht, Änderungen der atomaren Struktur über den gesamten Zyklus der Kompression und Dekompression zu verfolgen und nicht nur zum Start und zum Ende des Versuchs wie in früheren, so genannten Recovery-Experimenten.“
Das Team konnte auf diese Weise die Amorphisierung von Albit und Anorthit bei verschiedenen Kompressionsraten von einem Zehntel Gigapascal pro Sekunde bis 81 Gigapascal pro Sekunde bestimmen. „Die Ergebnisse zeigen, dass der Übergang zur Amorphisierung der Mineralien bei sehr verschiedenen Drücken geschieht, abhängig von der Kompressionsrate“, berichtet Ehm. „Eine höhere Kompressionsrate führt dabei zu einem geringeren Amorphisierungsdruck.“ So wurde Albit bei der niedrigsten Kompressionsrate erst bei einem Druck von 31,5 Gigapascal komplett amorph, bei der höchsten Kompressionsrate dagegen schon bei etwa dem halben Druck, 16,5 Gigapascal. „Aus diesem Grund ist die Amorphisierung von Plagioklas-Mineralien nicht unbedingt ein eindeutiger Standard um die charakteristischen Bedingungen von Spitzendruck und -temperatur während eines Meteoriteneinschlags zu ermitteln“, erläutert Ehm. Weitere Untersuchungen sollen nun das Verhalten dieser Mineralien in noch größerem Detail durchleuchten und klären, ob und wie sich die Einschlagbedingungen gegen die innere Struktur von Gesteinsmaterialien eichen lassen.
DESY / JOL
Weitere Infos
- Originalveröffentlichung
M. Sims et al.: Pressure-induced amorphization in plagioclase feldspars: A time-resolved powder diffraction study during rapid compression, Earth & Plan. Sci. Lett. 507, 166 (2019); DOI: 10.1016/j.epsl.2018.11.038 - Department of Geosciences, Stony Brook University, Stony Brook
- PETRA III, Deutsches Elektronensynchrotron DESY, Hamburg