01.04.2009

Mikrokapseln mit Memory Effekt

Ein lang gehegter Traum von Produktentwicklern und Marketingspezialisten könnte bald wahr werden: die Farbe von Produkten reversibel und gleichzeitig ohne ständige Energiezufuhr verändern zu können


   
Ein lang gehegter Traum von Produktentwicklern und Marketingspezialisten könnte bald wahr werden: die Farbe von Produkten reversibel und gleichzeitig bistabil, d. h. ohne ständige Energiezufuhr, verändern zu können. Eine gemeinsame technologische Entwicklung von vier Instituten der Fraunhofer-Gesellschaft und der University of California Riverside (UCR) verspricht ein auf sämtlichen Oberflächen universell einsetzbares Material, dessen Farbe mit Hilfe eines drucker- oder stiftähnlichen Geräts verändert werden kann.

Die Forscher setzen dabei nicht auf Farbpigmente, sondern auf sogenannte photonische Kristalle, die sich beispielsweise in Pfauenfedern, Schmetterlingsflügeln oder Opalen finden. Diese photonischen Kristalle reflektieren eine bestimmte Lichtwellenlänge, das Partikel erscheint dann beispielsweise blau. Während natürliche photonische Kristalle lediglich eine Lichtwellenlänge reflektieren können, gelang es Yin und seinen Mitarbeitern an der UCR, photonische Kristalle auf Basis nanoskaliger Eisenoxid-Partikel aufzubauen, deren reflektierte Lichtwellenlänge über das Anlegen eines Magnetfeldes gesteuert werden kann. So lässt sich durch die Intensität des angelegten Magnetfelds die Farbe über das gesamte sichtbare Lichtwellenspektrum verändern.

Bisher hatte diese Technologie allerdings noch mit einem wesentlichen Problem zu kämpfen: Bei Entfernung des Magnetfelds fiel das Kristallgitter zusammen und das eisenoxid-basierte Material zeigte sich wieder in seiner Eigenfarbe - Braun. Forscher der Fraunhofer-Gesellschaft entwickelten nun einen Ansatz, der es ermöglicht, die photonischen Kristalle der UCR auf Oberflächen zu applizieren und gleichzeitig die eingestellte Farbe zu fixieren. Dazu werden nanoskalige Eisenoxid-Partikel in einer Matrix dispergiert, deren Fließfähigkeit sich verändern lässt. Anschließend wird das Materialsystem in Mikrokapseln mit 20 -100 Mikrometer Durchmesser verkapselt. Auf diese Weise lassen sich nun die einzelnen Mikrokapseln über einen externen Manipulator, etwa mit einem Stift oder Drucker, in ihrer Farbe einstellen. Das Matrixmaterial bewahrt dabei die eingestellte Gitterstruktur und damit die gewünschte Farbe.

Die Mikrokapseln lassen sich mit bereits etablierten Applikationsverfahren auf sämtlichen denkbaren Oberflächen aufbringen - von Textilien, Papier und Kunststoffen bis hin zu Metallen. Diese Oberflächen werden damit in ihrer Farbe variierbar. Die angedachten Einsatzmöglichkeiten reichen von mehrfach-beschreibbaren Papieren und Folien, über individualisierbare Verpackungen, Skier, Teppiche, Wandfarben bis hin zu veränderbarem Interieur bei Automobilen und Flugzeugen.

Doch nicht nur die Technologie weist großes Innovationspotenzial auf. Auch bezüglich der Weiterentwicklung möchten die Forscher der UCR und der Fraunhofer-Gesellschaft neue Wege beschreiten: Sie stellen derzeit ein Innovationsnetzwerk aus Unternehmen zusammen, die ein späteres Anwendungs- oder Herstellungsinteresse an dieser Technologie haben. Gemeinsam mit diesen Unternehmen soll zielgerichtet der spätere Produkteinsatz vorangetrieben werden. Die Finanzierung der Forschungsarbeiten übernehmen hier die Industrieunternehmen im Netzwerk. Unter dem Motto "High Risk - High Return: Forschung im Verbund" teilen sie sich das Entwicklungsrisiko und den Entwicklungsaufwand, profitieren dabei jedoch von der exklusiven Anwendung auf ihrem Applikationsfeld. Neben dem Zugriff auf die Forschungsergebnisse erhalten die beteiligten Unternehmen auch die Möglichkeit, die patentierte Technologie exklusiv in ihrem Anwendungsgebiet einzusetzen.

Im Innovationsnetzwerk arbeiten im Auftrag der Industriepartner insgesamt fünf Forschungspartner zusammen, um diesen vielversprechenden Ansatz in knapp drei Jahren zur Einsatzreife zu treiben:
  • Das Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO in Stuttgart ist für das Netzwerkmanagement sowie für das Innovations- und Technologiemanagement zur systematischen, marktorientierten Entwicklung der Technologie verantwortlich.
  • Die University of California Riverside UCR übernimmt die Weiterentwicklung des Partikelsystems zum Aufbau der photonischen Kristalle.
  • Das Fraunhofer-Institut für Silicatforschung ISC in Würzburg entwickelt die in ihrer Fließfähigkeit gezielt änderbare Matrix.
  • Das Fraunhofer-Institut für Angewandte Polymerforschung IAP in Potsdam-Golm übernimmt die Entwicklung geeigneter Mikrokapselsysteme und -verfahren.
  • Das Fraunhofer-Institut für Physikalische Messtechnik IPM entwickelt den Manipulator, mit dem das Materialsystem angesteuert und in seiner Farbe verändert werden kann.

Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

Weitere Infos:

AL

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen