Mikroskop für magnetische Atome
Neue Technologie für eine magnetische Bildgebung oder Datenverarbeitung.
Direkt sichtbar gemacht wurden Atome vor knapp 35 Jahren in Zürich. Mit dem von Gerd Binnig und Heinrich Rohrer entwickelten Rastertunnelmikroskop konnten Materialoberflächen mit einer räumlichen Auflösung von weniger als einem Nanometer untersucht werden. Forscher um Urs Ramsperger und Danilo Pescia am Labor für Festkörperphysik der ETH Zürich haben nun gemeinsam mit einem Kollegen der Istanbul Technical University die Möglichkeiten solcher Extrem-Mikroskope um ein entscheidendes Detail erweitert. Ihnen ist es gelungen, die Magnetisierung eines Materials mit einer räumlichen Auflösung von wenigen Nanometern zu messen. In Zukunft könnte diese Technologie sowohl für das Abbilden magnetischer Materialien als auch für die Entwicklung neuer Methoden der Informationsverarbeitung nützlich sein.
Abb.: Mit der neuen Methode lassen sich präzise Messungen durchführen. Das abgebildete Relief zeigt magnetische Nanostrukturen, deren Dicke nur ein Atom umfasst. (Bild: ETHZ)
Das Besondere an der neuen Technologie ist, dass sie eigentlich gar nicht funktionieren dürfte. Um einzelne Atome aufzulösen, wird nämlich in einem Rastertunnelmikroskop eine Metallspitze der Materialoberfläche bis auf atomare Abstände im Bereich eines Nanometers genähert. Nach den Regeln der Quantenmechanik können bei derart kurzen Entfernungen Elektronen aus der Metallspitze in das Material tunneln und so einen Strom erzeugen, mit dem sich dann ein Abbild der Oberfläche herstellen lässt. Die ETH-Forscher erhöhten nun diesen Abstand auf mehrere Nanometer und erlebten dabei gleich zwei Überraschungen, wie Danilo Pescia erklärt: „Zum einen hatten wir trotz des höheren Abstands noch eine sehr gute räumliche Auflösung, und zum anderen konnten wir Elektronen aus der Tunnelregion extrahieren – obwohl Rechnungen gezeigt hatten, dass dies praktisch nicht möglich sein sollte.“ Normalerweise sind die Elektronen, die von der Metallspitze aus in das Material tunneln, in diesem Zwischenraum gefangen und sollten selbst bei größeren Abständen der Theorie zufolge die Tunnelregion nur äußerst selten verlassen.
Die extrahierten Elektronen enthalten allerdings wertvolle Informationen. Insbesondere ihr Spin ist für die Forscher interessant, denn er gibt Aufschluss darüber, ob und in welche Richtung die Atome des zu untersuchenden Materials magnetisiert sind. Der Spin führt in der Praxis aber nur zu einem sehr kleinen Messsignal. Ihn nachzuweisen ist daher eine große technische Herausforderung, insbesondere unter den schwierigen Umständen eines Tunnelexperimentes. In ihrem Experiment legten die Wissenschaftler eine geeignete elektrische Spannung an die Metallspitze eines Rastertunnelmikroskops, wodurch Elektronen ohne eine bestimmte Spinrichtung austraten. Trafen diese auf magnetische Atome – auf Atome also, die selbst einen Spin haben – so wurde deren Spinrichtung auf die aus der Tunnelregion extrahierten Elektronen übertragen. Schließlich wurde die Spinrichtung dieser Elektronen mit einem Spin-Detektor nachgewiesen. Auf diese Weise gelang es, die Magnetisierung im Material mit einer räumlichen Auflösung von fünf Nanometern zu messen.
Schon vor knapp dreißig Jahren wurde sowohl bei IBM Zürich als auch am National Institute of Standards and Technology in den USA ein ähnliches Experiment versucht. Das Ziel, ein räumlich aufgelöstes Bild des magnetischen Zustandes zu erhalten, wurde aber verfehlt. Die ETH-Forscher sind zufrieden, dass ihnen das jetzt trotz der negativen Voraussagen gelungen ist. Nun arbeiten sie daran, den unerwarteten Erfolg auch theoretisch zu verstehen und die Grenzen der neu entstandenen Technologie zu erweitern.
Für Urs Ramsperger und Danilo Pescia enthält diese Geschichte eine klare Lehre: „In der Forschung darf man sich nicht scheuen, auch mal das Unmögliche zu probieren“, sagen sie und fügen hinzu: „Manchmal klappt es in der Praxis besser als in der Theorie – Papier ist eben nur Papier.“ Dieser Mut hat sich nun ausgezahlt und wird, so hoffen die Forscher, zu vielerlei Anwendungen führen. Man könnte zum Beispiel die magnetischen Eigenschaften von Materialien in Echtzeit mit einer Auflösung von Billionstel Sekunden untersuchen. Da im jetzigen Experiment im Endresultat eine elektrische Spannung in einen Spin umgewandelt wurde, sollte auch die gezielte Manipulation der Magnetisierung einzelner Atome möglich sein.
ETHZ / JOL