09.11.2023

Modell für starke Klimaschwankungen

Mechanismus erklärt starke Klimaschwankungen während der letzten Eiszeit.

Während der letzten Eiszeit, dem letzten glazialen Maximum vor rund 20.000 Jahren, unterlag das Klima im Nord-Atlantik viel größeren mehrhundertjährigen Schwankungen, als es in der jetzigen Warmzeit auf dieser Skala variiert. Darauf deuten Funde in Eis- und Ozeanbodenkernen hin. Forscher des Marum – Zentrum für Marine Umweltwissenschaften und des Fachbereichs Geowissenschaften der Universität Bremen sowie der Vrije Universiteit Amsterdam (Niederlande) haben nun zum ersten Mal anhand eines Klimamodells nachgewiesen, dass interne Faktoren, wie die Temperatur- und Salzverteilung im Ozean, diese mehrhundertjährigen Schwankungen antreibt. 


Abb.: Einfluss der eiszeitlichen mehrhundertjährigen Klimaschwankung auf...
Abb.: Einfluss der eiszeitlichen mehrhundertjährigen Klimaschwankung auf Lufttemperaturen im nordatlantischen Raum (in Grad Celsius). Gezeigt sind die Temperaturunterschiede zwischen Warm- und Kaltphase der Klimaschwankung.
Quelle: M. Prange et al. / Marum

Während der Mensch für die aktuelle globale Klimaerwärmung verantwortlich ist, hat unsere Erde im Laufe ihrer Geschichte stets natürliche Klimaschwankungen erlebt. Mögliche Antriebsfaktoren für diese Schwankungen wären etwa die Veränderungen in der Helligkeit der Sonne oder explosive Vulkanausbrüche, aber auch Wechselwirkungen innerhalb des Systems Atmosphäre-Ozean-Meereis. Fachleute sprechen hier von externen und internen Einflussfaktoren auf das Klimasystem. Wie lange solch eine Schwankung, auch Variabilität genannt, andauert, ist ganz unterschiedlich. In der Klimaforschung spielen solche Klimaschwankungen eine besondere Rolle, insbesondere auch um die Auswirkungen der aktuellen menschengemachten Klimaveränderungen noch besser zu verstehen. Über Klimaschwankungen, die über Jahrhunderte andauern, herrschte, bis auf ein paar wenige Ausnahmen, jedoch lange Unklarheit. 

Matthias Prange, Erstautor der Studie und Erdsystemmodellierer am Marum und Fachbereich Geowissenschaften, erklärt: „Natürliche Klimavariabilität auf der mehrhundertjährigen Zeitskala ist bisher nicht gut verstanden. Zum einen gibt es keine Beobachtungszeitreihen, die solch lange Zeiträume abdecken, zum anderen existieren auch nur wenig ausreichend aufgelöste Proxydaten, die diese Zeitskala beleuchten können. Problematisch war zudem, dass Klimamodelle bislang große Schwierigkeiten hatten, die natürliche Klimavariabilität auf einer Zeitskala von 100 bis 1000 Jahren abzubilden.“

In den vergangenen Jahren entwickelten sich die Modelle jedoch weiter, und die Wissenschaftler um Matthias Prange konnten nun ein bewährtes Klimamodell nutzen, um sich die natürlichen Klimaschwankungen auf einer Zeitskala von 100 bis 1000 Jahren im letzten Hochglazial genauer anzuschauen. Vorhandene Paläodaten aus Eis- und Ozeanbodenbohrkernen zeigen, dass sich die natürliche Klimavariabilität in dem Zeitraum vor 23.000 bis 19.000 Jahren verstärkte, weltweit sogar viermal stärker war als im heutigen Holozän. Besonders im Nord-Atlantik war sie sehr ausgeprägt. „Dass wir nun über Klimamodelle verfügen, die solche Änderungen in der natürlichen Klimavariabilität abbilden können, spiegelt die großen Fortschritte in der Klimamodellierung wider, und offenbart auf beeindruckende Weise die Fähigkeiten der Modelle“, so Prange.

Belege für externe Antriebsfaktoren für die mehrhundertjährigen Klimaschwankungen gibt es nicht. Auf der Suche nach anderen Ursachen blickten die Wissenschaftler auf mögliche interne Antriebfaktoren. „Wir nutzten das bekannte Community Earth System Model, kurz CESM1.2., das auch für die Prognosen des Weltklimarates genutzt wird, und fütterten es mit den Randbedingungen der letzten Eiszeit“, so Prange, „so gaben wir vor, wie hoch die Treibhausgaskonzentration war, wie die Inlandseisverteilung aussah und welche Erdbahnparameter vorherrschten.“

Durchlief die Eiszeit ihren Höhepunkt und war am stärksten ausgeprägt, konnten die Wissenschaftler im Nord-Atlantik eine spontan ablaufende mehrhundertjährige Oszillation feststellen, die mit Schwankungen der Atlantischen Meridionalen Umwälz-Zirkulation (kurz AMOC ) einhergeht. Ein Zyklus, bei dem die AMOC stärker und wieder schwächer wird, dauert dabei rund 400 Jahre. Hierbei wird aus dem Südatlantik salzarmes Wasser bis in den Nordatlantik transportiert. Dieser wird dadurch ebenso salzärmer, und das dortige Meerwasser wird weniger schwer, es sinkt nicht mehr so stark in die Tiefe – wodurch weniger Tiefenwasser produziert und gen Südatlantik transportiert wird.

Der zyklische Prozess ist dabei selbsterhaltend, da die schwächere AMOC dazu führt, dass wiederum weniger salzarmes Wasser aus dem Südatlantik nach Norden transportiert wird. Der Salzgehalt im Nordatlantik kann folglich wieder steigen, und es wird mehr Tiefenwasser produziert. Matthias Prange erklärt: „Diese Prozesse deuten darauf hin, dass die mehrhundertjährige Klimavariabilität eng mit dem unterschiedlichen Salzgehalt und der Temperatur in der Wassersäule zusammenhängt“, und obwohl die Amplituden der Schwankungen niedrig sind, zeigen sich deutliche Auswirkungen auf die Ausbreitung des Nordatlantischen Meereises und auf die Temperaturen in Grönland. „So schwanken die dortigen Jahresmitteltemperaturen um vier Grad Celsius infolge der AMOC-Oszillationen“, ergänzt Prange.

Um diese modellierten Funde zu stützen, untersuchten die Wissenschaftler die damalige Meeresoberflächen-Wassertemperatur. „Hierzu haben wir sämtliche hochaufgelösten Rekonstruktionen aus marinem Sediment des Nordatlantiks zusammengefügt und analysiert“, so Lukas Jonkers, Mit-Autor der Studie und Mikropaläontologe am Marum, „Hochaufgelöst heißt hier Datenpunkte, die durchschnittlich nicht weiter als 200 Jahre auseinander liegen, maximal 1000 Jahre.“ Die untersuchten Paläoarchive belegen eine wiederkehrende Temperaturschwankung des Oberflächenwassers im Meer alle 150 bis 1000 Jahre während des letzten Glazialen Maximums – passend zur modellierten mehrhundertjährigen Klimavariabilität mit internen Antriebsfaktoren.

Die jüngsten Forschungsergebnisse unterstreichen, wie wichtig es ist, Rückkopplungsprozesse im Klimasystem genauer zu untersuchen und zu verstehen. Matthias Prange betont, dass ein tieferes Verständnis von Klimaschwankungen auf verschiedenen Zeitskalen unerlässlich ist, da diese Auswirkungen auf den künftigen Klimawandel haben und somit für Gesellschaften zu unerwarteten und unangenehmen Überraschungen führen könnten. Diese Erkenntnisse fließen auch in die Arbeit des Exzellenzclusters „Der Ozeanboden - Unerforschte Schnittstelle des Meeres“ ein, der am Marum angesiedelt ist.

Marum / DE


Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen