Molekularer Schalter im Film
Ablauf eines Nanoschalters zeigt Vorwärts- und Rückwärtsbewegung.
Sie sind die molekularen Gegenstücke zu elektrischen Schaltern und spielen für viele Prozesse in der Natur eine wichtige Rolle: molekulare Schalter. Solche Moleküle können auf umkehrbare Weise zwei oder mehr Zustände einnehmen und so molekulare Prozesse steuern. In lebenden Organismen spielen sie beispielsweise bei der Muskelkontraktion eine Rolle – auch unsere visuelle Wahrnehmung beruht auf der Dynamik eines molekularen Schalters im Auge. Wissenschaftler arbeiten intensiv daran, neuartige molekulare Bauteile zu entwickeln, die das Schalten zwischen verschiedenen Zuständen ermöglichen, sodass molekulare Prozesse gezielt kontrollierbar werden.
Ein europäisches Forscherteam um den Nanotechnologen Saeed Amirjalayer von der Westfälischen Wilhelms-Universität Münster (WWU) hat jetzt einen tieferen Einblick in die Abläufe eines molekularen Schalters erlangt. Mithilfe von molekulardynamischen Simulationen erzeugten die Wissenschaftler einen fotografischen Film auf atomarer Ebene und verfolgten so die Bewegung eines molekularen Bausteins. Es zeigte sich eine durch Licht gesteuerte „Pedalobewegung“, die sowohl vorwärts als auch rückwärts verläuft. Sie war zwar in diesem Zusammenhang bereits in früheren Arbeiten vorhergesagt worden, konnte jedoch bisher nicht direkt nachgewiesen werden.
Die Ergebnisse können in Zukunft dabei helfen, die Eigenschaften von Materialien mithilfe von molekularen Schaltern zu steuern – um beispielsweise Medikamente gezielt aus Nanokapseln abzugeben. „Für eine effiziente Einbettung in neuartige responsive Materialien ist die detaillierte Aufklärung des Schaltvorgangs und somit die Funktionsweise auf molekularer und atomarer Ebene entscheidend“, betont Saeed Amirjalayer, Gruppenleiter am Physikalischen Institut der WWU und am Center for Nanotechnology (CeNTech).
Molekulardynamische Simulationen ermöglichen es, durch die Berechnung der Wechselwirkungen zwischen Atomen und Molekülen deren Bewegung im Computer darzustellen. Auf diese Weise untersuchten die Wissenschaftler einen Azodicarboxamid-basierten molekularen Schalter, wobei sie im Rahmen der Simulationen ein kombiniertes quantenmechanisches und molekülmechanisches Verfahren einsetzten. „Frühere experimentelle und theoretische Arbeiten ließen bisher nur einen indirekten Einblick in den Bewegungsmechanismus eines solchen Schalters in Lösung zu. Mithilfe unseres theoretischen Ansatzes können wir jetzt die Licht-induzierte Dynamik unter Berücksichtigung der molekularen Umgebung verfolgen“, erläutert Amirjalayer.
Die durch Licht ausgelöste Pedalobewegung des Schalters bewegt sich vor und zurück – wie ein Fahrradpedal, das man vor- und zurücktritt. Das detaillierte Bild der Bewegung eines photo-responsiven Schalters bildet eine wichtige Grundlage für die Anwendung dieser molekularen Bausteine in neuartigen „intelligenten“ Funktionsmaterialien.
Außerdem waren Wissenschaftler der Universitäten Bologna (Italien) und Amsterdam (Niederlande) an der Studie beteiligt. „Trotz der Corona-Krise hatten wir einen sehr intensiven Austausch und sind dabei zu interessanten und gewinnbringenden Erkenntnissen gekommen“, resümiert Amirjalayer.
WWU / DE