08.02.2018

Mosaike für neue Materialien

Archimedischen Parkettierungen ermöglichen außer­gewöhnliche Eigen­schaften.

Um eine Fläche mit gleich­förmigen Kacheln lückenlos zu pflastern, kommen nur wenige geome­trische Grund­formen in Frage: Dreiecke, Vierecke und Sechsecke. Mit zwei oder mehr Kachel­formen lassen sich wesentlich mehr und deutlich komplexere Muster erzeugen, die immer noch regelmäßig sind, die Archi­medischen Parket­tierungen. Auch Materialien können eine solche Parket­tierung aufweisen. Diese Strukturen sind häufig mit ganz besonderen Eigen­schaften verbunden, zum Beispiel mit außerge­wöhnlicher elektrischer Leit­fähigkeit, spezieller Licht­reflektion oder extremer mecha­nischer Belast­barkeit. Doch es ist schwierig, solche Strukturen gezielt zu erzeugen. Dafür sind große molekulare Bausteine nötig, die nicht mit den konven­tionellen Herstellungs­prozessen kompatibel sind.

Abb.: Archimedische Parkettierungen sind oft mit sehr speziellen Eigenschaften verbunden, beispielsweise einer ungewöhnlichen elektrischen Leitfähigkeit oder einer speziellen Lichtreflektivität. (Bild: Klappenberger & Zhang, TUM)

Bei einer Klasse supra­molekularer Netzwerke brachte nun ein inter­nationales Team um Florian Klappen­berger und Johannes Barth von der TU München sowie Mario Ruben vom Karls­ruher Institut für Techno­logie organische Moleküle dazu, sich zu größeren Bausteinen zu verbinden, die selbst­organisiert ein komplexes Parkettmuster bilden. Als Ausgangs­verbindung nutzten sie Ethynyl-Iodophenanthren, ein hand­liches orga­nisches Molekül aus drei aneinander­gekoppelten Kohlenstoff­ringen, das ein Iod- und ein Alkin-Ende besitzt. Auf einem Silber­substrat bildet dieses Molekül zunächst ein regel­mäßiges Netz mit großen sechs­eckigen Maschen.

Eine Wärme­behandlung setzt dann eine Abfolge chemischer Prozesse in Gang, die einen neuartigen, deutlich größeren Baustein erzeugen, der dann quasi auto­matisch und selbst­organisiert eine komplexe Schicht mit kleinen sechs-, vier- und drei­eckigen Poren bildet. Dieses Muster wird in der Sprache der Geometrie als semi­reguläre 3.4.6.4 Parket­tierung bezeichnet. „Unsere Raster­tunnelmikro­skopie-Messungen zeigen deutlich, dass am Molekül­umbau viele Reaktionen beteiligt sind, was normaler­weise zu zahl­reichen Abfall­produkten führt. Hier jedoch werden die Neben­produkte wieder­verwendet, so dass der Gesamt­prozess mit großer Atom­ökonomie, das heißt mit nahezu hundert­prozentiger Ausbeute, zuverlässig zum gewünschten Endprodukt führt“, erklärt Klappen­berger.

Wie es dazu kommt, fanden die Forscher durch weitere Experi­mente heraus. „Mit Hilfe röntgen­spektro­skopischer Messungen am Elektronen­speicherring Bessy II des Helmholtz-Zentrums Berlin konnten wir ent­schlüsseln, wie sich Iod vom Ausgangs­stoff abspaltet, Wasserstoff­atome zu neuen Plätzen wandern und die Alkin-Gruppen ein Silber-Atom einfangen“, berichtet Yi-Qi Zhang. Mit Hilfe des Silber-Atoms binden sich in der Folge zwei Ausgangs­bausteine zu einem neuen, größeren Baustein aneinander. Die neuen Bausteine bilden anschließend die beobach­tete komplexe Poren­struktur.

„Wir haben einen völlig neuen Weg entdeckt, um komplexe Materialien aus einfachen orga­nischen Bau­steinen herzu­stellen“, fasst Klappen­berger zusammen. „Das ist wichtig, um Materia­lien mit neuen und extremen Eigen­schaften gezielt synthe­tisieren zu können. Außerdem tragen diese Ergebnisse dazu bei, das spontane Auftauchen von Kom­plexität in chemischen und biolo­gischen Systemen besser zu verstehen.“

TUM / JOL

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Anbieter des Monats

Quantum Design GmbH

Quantum Design GmbH

Forschung lebt von Präzision. Seit über 40 Jahren steht Quantum Design für innovative Messtechnik auf höchstem Niveau – entwickelt in Kalifornien, betreut weltweit. Unsere Systeme sind der Goldstandard in der Materialcharakterisierung und ermöglichen tiefe Einblicke in die magnetischen, thermischen und optischen Eigenschaften von neuen Materialien.

Meist gelesen

Themen