06.11.2007

Nano-Kristalle aus der Mikrowelle

Karlsruher Wissenschaftler nutzen Ionische Flüssigkeiten und Mikrowellen zur Herstellung von Nanopartikeln.



Karlsruher Wissenschaftler nutzen Ionische Flüssigkeiten und Mikrowellen zur Herstellung von Nanopartikeln.

„Man nehme Zinn- und Indiumchlorid, gebe es in einen Topf mit Ionischer Flüssigkeit und erhitze das Ganze in der Mikrowelle.“ Mit diesem Rezept lassen sich elektrisch leitende Nanopartikel aus Indium-Zinn-Oxid (ITO: Indium Tin Oxide) schnell und einfach synthetisieren. Ohne aufwändige Zwischenschritte produziert Claus Feldmann vom Karlsruher Institut für Technologie (KIT) mit diesem neuen Verfahren gleichförmige und regelmäßige, zehn bis fünfzehn Nanometer große Kristalle, die nicht verklumpen und sich leicht in wässrigen Medien dispergieren lassen. Diese Nanokristalle können mit konventionellen Techniken als unsichtbare Elektroden auf transparente, flexible oder hitzeempfindliche Materialien aufgedruckt werden. Mit der inzwischen patentierten „Ein-Topf-Mikrowellen-Synthese“ in Ionischen Flüssigkeiten stellt Feldmann aber auch andere nanoskalige Partikel wie etwa lumineszierende Materialien her, die im sichtbaren Licht transparent sind, unter UV-Licht aber farbig leuchten.

Nanopartikel, die sich als transparente, nur wenige Nanometer dicke stromleitende oder leuchtende Schichten auftragen lassen, werden in Leuchtdioden und Solarzellen, zur Sicherheitsmarkierung oder für dekorative Zwecke eingesetzt. Um besonders gleichmäßige Kristalle ohne Defekte in ihrer Gitterstruktur zu gewinnen, sind üblicherweise hohe Temperaturen (bis 600 °C) erforderlich. Zusätzlich beigemischte Substanzen, die die neu gebildeten Partikel wie eine Nussschale umschließen, können verhindern, dass diese sich zu größeren Aggregaten zusammenballen. „Allerdings ist die Synthese aufwändig und einige Zusatzstoffe sind toxisch. Nanopartikel für therapeutische oder diagnostische Anwendungen in der Medizin kann man damit nur schwer synthetisieren“, erläutert Feldmann.

Abb.: Ohne aufwändige Zwischenschritte lassen sich mit dem neuen Synthese-Verfahren gleichförmige und regelmäßige, zehn bis fünfzehn Nanometer große Kristalle herstellen, die nicht verklumpen und sich leicht in wässrigen Medien dispergieren lassen. (Quelle: KIT)


Um diese Nachteile zu umgehen, nutzt der Chemiker am DFG-Centrum für Funktionelle Nanostrukturen des KIT so genannte Ionische Flüssigkeiten als Lösungsmittel. Sie bestehen ausschließlich aus großen Kationen und Anionen, sind also ein wasserfreies, nicht-kristallines Salz. Sie sind bei Temperaturen zwischen –50 und +400 Grad Celsius flüssig und dabei chemisch stabil. Da sie kaum mit den gelösten Partikeln in Wechselwirkung treten, lassen sie sich bei der Aufreinigung der Produkte leicht entfernen. Diese Eigenschaft hat allerdings einen Nachteil: Neu gebildete Partikel werden nicht von einem Mantel aus Lösungsmittel-Molekülen umhüllt, der den Kontakt untereinander verhindert. Erhitzt man das Gemisch auf konventionelle Art, bilden sich daher wegen des Temperaturgefälles innerhalb der Lösung größere Komplexe, die sich anschließend nicht mehr trennen lassen. Hier kommt die Mikrowelle ins Spiel: Im Mikrowellenofen wird die Probe in Sekunden gleichmäßig im ganzen Gefäß erhitzt und so die Aggregation der Partikel verhindert.

„Die ersten Versuche haben wir tatsächlich mit einem einfachen Hauhaltsgerät durchgeführt“, erinnert sich Feldmann. Inzwischen benutzt er aber eine spezielle Labor-Mikrowelle, in der er die Reaktionslösung rühren und ihre Temperatur messen kann. Bis zur industriellen Nutzung seines Syntheseverfahrens ist es allerdings noch ein langer Weg. Denn noch sind Ionische Flüssigkeiten, die bisher kaum technisch angewendet werden, relativ teuer. Die Preise würden aber mit steigender Nachfrage sinken, ist sich Feldmann sicher. Außerdem könnten die flüssigen Salze nach der Synthese wieder verwendet werden. Chemieunternehmen wie die Evonik Degussa GmbH setzen bereits auf die neue Methode und kooperieren eng mit dem Karlsruher Chemiker, dessen Arbeiten zudem von den Ländern Baden-Württemberg und Nordrhein-Westfalen, der Europäischen Union und der Deutschen Forschungsgemeinschaft unterstützt werden.

Quelle: KIT

Weitere Infos:

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen