Neue Anziehungskraft in Quantenplasmen?
RUB-Physiker beschreiben bislang unbekanntes Negativpotential auf der Nanoskala.
Heutzutage sind immer kleinere und leistungsstärkere Computerchips gefragt. Physiker der Ruhr-Universität Bochum haben eine neue physikalische Anziehungskraft entdeckt, die diesen Fortschritt beschleunigen kann. Padma Shukla und Bengt Eliasson fanden ein bisher nicht bekanntes Phänomen in Quantenplasmen: Ein negativ geladenes Potential ermöglicht es, innerhalb des Plasmas positive Ionen in atom-ähnlichen Strukturen zu bündeln. Dadurch kann Strom wesentlich schneller und effizienter geleitet werden als bisher, woraus sich neue Perspektiven für Nanotechnologien eröffnen.
Abb.: Steigt die Bedeuting von Quanteneffekten in Plasmen (Parameter α), etwa durch abnehmende Dichte, nimmt das elektrische Potential Φ ein Minimum bei negativen Werten an. (Bild: Shukla & Eliasson)
Quanten-Plasmen erweitern den Anwendungsbereich gewöhnlichen Plasmas auf Nanoskalen, wo quantenmechanische Effekte an Bedeutung gewinnen. Das ist der Fall, wenn die Plasmadichte sehr hoch und die Temperatur niedrig ist. Dann tritt das neu entdeckte Potential auf, das durch kollektive Wechselwirkungsprozesse entarteter Elektronen mit dem Quantenplasma entsteht. Solche Plasmen finden sich etwa im Innern des Jupiter, in Kernen von Sternen mit versiegendem nuklearen Energievorrat (Weiße Zwerge) oder sie entstehen künstlich im Labor mit Hilfe von Laserbestrahlungen. Das neue negative Potential führt zu einer anziehenden Kraft zwischen den Ionen, die sich dann zu Gittern formieren. Sie werden komprimiert und die Abstände zwischen ihnen verkürzt, so dass Strom weitaus schneller hindurch fließen kann.
Die Erkenntnisse der Bochumer Wissenschaftler eröffnen die Möglichkeit der Ionenkristallisation auf der Größenskala eines Atoms. Anwendungsmöglichkeiten sind beispielsweise Mikrochips für Quantencomputer, Halbleiter, dünne Metallfolien oder auch metallische Nanostrukturen.
RUB / OD